Fourier decomposition of variable stars using regularized regression

Daniel Wysocki

Rochester Institute of Technology

AST Graduate Seminar - December 7th, 2015

Variable Stars

Daniel Wysocki (RIT)

Overview

- in general, any star whose brightness changes on short timescales is a variable star
- many different types exist

Some classes of variable stars

Pulsating periodic intrinsic variables

For the remainder of this talk:

variable star \equiv pulsating periodic intrinsic variable star.

- not in hydrostatic equilibrium
 - typically in the instability strip
- periodic oscillation
 - predictable
- stellar pulsation
 - κ-mechanism

Henrietta Swan Leavitt

Henrietta Swan Leavitt

- worked as a "computer" at Harvard in the early 20th century
- discovered a relation between the period and luminosity of Cepheids
 - Leavitt's law
 - standard candles
- enabled Edwin Hubble to measure the expansion of the Universe

Light Curves

Overview

- repeated photometric measurements of an object over time
- plotting brightness versus time gives us a light curve

Light Curve of a Cepheid variable star

Visualization of OGLE-LMC-CEP-0002

Daniel Wysocki (RIT)

Variable Stars

Dec 7, 2015 9 / 35

Fourier decomposition

Joseph Fourier

• any continuous, periodic function can be represented as an infinite Fourier series

$$f(t) = A_0 + \sum_{k=1}^{\infty} A_k \cos(k\omega t + \Phi_k)$$

• characterized by the angular frequency ω , the mean A_0 , the amplitudes A_k , and the phase shifts Φ_k

Fourier (1808)

Fourier decomposition of periodic light curves

$$m(t) = A_0 + \sum_{k=1}^{n} A_k \cos(k\omega t + \Phi_k)$$

- Cepheid-like light curves well described by nth order Fourier Series
- physically they are close to harmonic oscillators

Solving for series parameters

$$m(t) = A_0 + \sum_{k=1}^n A_k \cos(k\omega t + \Phi_k)$$
$$= A_0 + \sum_{k=1}^n [a_k \sin(k\omega t) + b_k \cos(k\omega t)]$$

- Fourier series are non-linear
- simultaneously finding the optimal n, ω, A_k , and Φ_k is not easy

Period finding

• the most important parameter is the period

$$\omega = 2\pi/P$$

- we can approximate this by itself using a periodogram
 - Lomb-Scargle

Lomb-Scargle periodogram

It's linear!

$$m(t) = A_0 + \sum_{k=1}^n \left[a_k \sin(k\omega t) + b_k \cos(k\omega t) \right]$$

can be written in the form
$$\mathbf{X}\vec{\beta} = \vec{y}$$

which can be approximated using ordinary linear regression

System of equations

$$\vec{y} \to \begin{pmatrix} m_1 & m_2 & \dots & m_N \end{pmatrix}$$
$$\vec{\beta} \to \begin{pmatrix} A_0 & a_1 & b_1 & \dots & a_n & b_n \end{pmatrix}$$
$$\mathbf{X} \to \begin{pmatrix} 1 & \sin(1\omega t_1) & \cos(1\omega t_1) & \dots & \sin(n\omega t_1) & \cos(n\omega t_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \sin(1\omega t_N) & \cos(1\omega t_N) & \dots & \sin(n\omega t_N) & \cos(n\omega t_N) \end{pmatrix}$$

How many terms?

- $\bullet\,$ wait, we never decided on the order of the fit, n
- it's just a truncated series expansion
 - more terms means better, right?
 - let's try 100 terms...

Overfitting

Overfitting (again)

Underfitting

Choosing n

- need some criteria to decide the order of the fit
- Baart's criteria is often used for this
 - iterative approach, increasing n until diminishing returns
 - good at avoiding underfitting
 - bad at avoiding overfitting

Taking a step back

- take photometric measurements
- find the period
- approximate coefficients with OLS
- find the best order of fit using Baart's criteria

Taking a step back

- take photometric measurements
- periodogram
- regression
- model selection

Plotypus

- tool for modeling and plotting light curves
- free and open source
- version controlled and documented
- generated the light curve plots in this presentation
- astroswego.github.io/plotypus/
- download today!

Bellinger, Wysocki, and Kanbur (2015b)

Unconstrained regression

$$\begin{aligned} \mathbf{X}\vec{\beta} &= \vec{y} \\ (A_0, a_k, b_k) &= \operatorname*{argmin}_{\beta} \left\| \mathbf{X}\vec{\beta} - \vec{y} \right\|_2^2 \\ &= \operatorname*{argmin}_{(A_0, a_k, b_k)} \sum_{i=1}^N \left(A_0 + \sum_{k=1}^n \begin{bmatrix} a_k \sin(k\omega t_i) \\ + b_k \cos(k\omega t_i) \end{bmatrix} - m_i \right)^2 \end{aligned}$$

Find coefficients which minimize magnitude of residual vector

ℓ_0 regularization

$$(A_0, a_k, b_k) = \underset{\beta}{\operatorname{argmin}} \left\{ \left\| \mathbf{X} \vec{\beta} - \vec{y} \right\|_2^2 + \lambda \left\| \vec{\beta} \right\|_0 \right\}$$

- $\left\|\vec{\beta}\right\|_{0}$ is equal to the number of non-zero terms in $\vec{\beta}$
- adds a penalty on the number of parameters, weighted by λ
- this is computationally expensive

ℓ_1 regularization (LASSO)

$$\begin{aligned} \left[A_0, a_k, b_k \right] &= \operatorname*{argmin}_{\beta} \left\{ \left\| \mathbf{X} \vec{\beta} - \vec{y} \right\|_2^2 + \left\| \vec{\beta} \right\|_1 \right\} \\ &= \operatorname*{argmin}_{\left(A_0, a_k, b_k\right)} \left\{ \begin{array}{l} \sum_{i=1}^N \left(A_0 + \sum_{k=1}^n \left[\begin{array}{c} a_k \sin(k\omega t_i) \\ + b_k \cos(k\omega t_i) \end{array} \right] - m_i \right)^2 \\ &+ \lambda \sum_{k=0}^n \left(|a_k| + |b_k| \right) \end{array} \right\} \end{aligned}$$

- least absolute shrinkage and selection operator (LASSO)
- adds a penalty on the sum of the amplitudes, weighted by λ
- automatically zeroes out non-contributing terms

Model selection with grid search

- use grid search with cross-validation
 - search over the order of fit n
- cross-validation helps fit underlying function, not just the data

Results

Daniel Wysocki (RIT)

OLS/Baart light curve

LASSO light curve

10th order fit using Lasso/Grid Search.

Results

Performance of LASSO/grid search versus OLS/Baart

Galaxy	Type	Stars	N (SD)	LASSO R^2 (MAD)	Baart R^2 (MAD)	Significance
(all)	(all)	52844	643.1 (462.0)	$0.8594 \ (0.1741)$	0.8492(0.1864)	p < .0001
(all)	CEP	7999	740.1 (298.4)	0.9816 (0.0191)	0.9810(0.0198)	p < .0001
(all)	T2CEP	596	747.6 (612.0)	0.9145(0.1159)	0.9009 (0.1328)	p < .0001
(all)	ACEP	89	497.3 (225.0)	0.9700(0.0245)	0.9689(0.0267)	p < .0001
(all)	RRLYR	44160	624.4(481.6)	0.8316(0.1816)	0.8197(0.1926)	p < .0001
LMC	(all)	28491	522.3(227.7)	0.7812(0.1695)	0.7723(0.1779)	p < .0001
LMC	CEP	3342	536.8(219.7)	0.9840(0.0172)	0.9833(0.0180)	p < .0001
LMC	T2CEP	201	538.3 (232.6)	0.8672(0.1569)	0.8599(0.1653)	p < .0001
LMC	ACEP	83	477.3 (214.7)	0.9704(0.0233)	0.9701 (0.0245)	p < .0001
LMC	RRLYR	24865	520.3 (228.6)	0.7544(0.1667)	0.7452(0.1755)	p < .0001
SMC	(all)	7146	851.4 (256.7)	0.9109(0.1241)	0.9091 (0.1266)	p < .0001
SMC	CEP	4625	886.5(256.2)	0.9800(0.0195)	0.9796(0.0200)	p < .0001
SMC	T2CEP	42	891.2 (241.4)	0.7965(0.2235)	0.7888 (0.2379)	p < .0001
SMC	ACEP	6	774.3 (190.2)	0.9277(0.0709)	0.9272(0.0706)	p = 0.2188
SMC	RRLYR	2473	785.2 (244.8)	0.6299(0.1915)	0.6203(0.1962)	p < .0001
BLG	(all)	17207	756.8 (698.1)	0.9579(0.0445)	0.9527(0.0514)	p < .0001
BLG	CEP	32	824.2 (569.0)	0.9742(0.0342)	0.9703(0.0396)	p < .0001
BLG	T2CEP	353	849.7 (746.8)	0.9525(0.0643)	0.9457(0.0747)	p < .0001
BLG	RRLYR	16822	754.7(697.2)	0.9581 (0.0440)	0.9528(0.0509)	p < .0001

Median coefficients of determination (R^2) and median absolute deviations (MAD) for models selected by cross-validated LASSO and Baart's ordinary least squares on OGLE *I*-band photometry. P-values obtained by paired Mann-Whitney *U* tests.

Missing harmonics

- LASSO makes no distinction between higher and lower order terms
 - if it doesn't contribute, it goes to zero
- this can result in $A_i = 0$, when $A_j \neq 0$, j > i
 - contrary to pulsation models, which say amplitude decreases with order

$$A_1 > A_2 > \ldots > A_n$$

- explanations:
 - harmonics absent from observations
 - e.g. we observe only near zero-crossing
 - interference pattern in pulsation (gets political)
 - others? (please tell me)

Multifrequency variable stars

$$m(t) = A_0 + \sum_{k_1 = -n}^n \dots \sum_{k_p = -n}^n A_{\mathbf{k}} \cos((\mathbf{k} \cdot \boldsymbol{\omega})t + \Phi_{\mathbf{k}})$$
$$\mathbf{k} \to \begin{pmatrix} k_1 & \dots & k_p \end{pmatrix} \quad \boldsymbol{\omega} \to \begin{pmatrix} \omega_1 & \dots & \omega_p \end{pmatrix}$$

- some variable stars oscillate with multiple (p) periods
- OLS fails to accurately fit these light curves
 - tools exist to manually fix certain amplitudes to zero
- LASSO successful in automatically zeroing out amplitudes Bellinger, Wysocki, and Kanbur (2015a)

References

Daniel Wysocki (RIT)

Earl Bellinger, Daniel Wysocki, and Shashi Kanbur. Measuring amplitudes of harmonics and combination frequencies in variable stars. *Arxiv e-prints*, November 2015. arXiv: 1512.00004 [astro-ph.SR].

- Earl Bellinger, Daniel Wysocki, and Shashi Kanbur. Plotypus: light curve analysis in Python. [Online; accessed 2015-04-04].
 2015. URL: https://astroswego.github.io/plotypus/.
 - Joseph Fourier. Mémoire sur la propagation de la chaleur dans les corps solides. *Nouveau bulletin des sciences de la société philomathique de paris*, 6:112–116, 1808.

