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Chapter 2

Observations of Galactic Nuclei and

Supermassive Black Holes

2.1 Structure of galaxies and galactic nuclei

2.1.1 Intensity profiles

Intensity profiles are functions used to describe the intensity of a galaxy as a function of distance from the

center, IpRq.

The Sérsic profile is commonly used, as it is simple and effective. The general form is:

ln IpRq “ ln Ie ´ b n
”

`

R{Re
˘1{n

´ 1
ı

. (Merritt 2.3)

The Sérsic index, n, characterizes the shape of the function, and in practice, n P r0.5, 8s. b is typically

chosen such that Re, the effective radius, contains half of the total light. The effective intensity, Ie, is thus

defined as Ie ” IpReq.

To make the function a little more intuitive, one may use differentiation to put it in the form:

d ln I

d lnR
“ ´

b

n

ˆ

R

Re

˙1{n

(Merritt 2.4)

This form illustrates the fact that the slope on a log–log plot of the intensity grows with R by pR{Req
1{n.

In many galaxies, within a radius Rb, there is a break in the intensity profile (shown in Merritt Figure 2.2).

For this reason, it is necessary to define a core-Sérsic profile:

Iprq “

$

’

’

’

&

’

’

’

%

Ib

ˆ

Rb
R

˙Γ

, R ď Rb,

Ib exp
´

bpRb{Req
1{n

¯

exp
´

´bpR{Req
1{n

¯

, R ą Rb.

(Merritt 2.8)
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2.2 Techniques for weighing black holes

In most cases, the determination of SBH mass is done through dynamical techniques, i.e. techniques which

use the motions of gas and stars to infer the black hole mass.

An important concept is the “influence radius”, rm, which is typically defined to satisfy

M‹pr ă rmq “ 2M‚. (Merritt 2.11)

In words, rm is the radius in which the enclosed mass in stars is twice that of the black hole, and the total

mass is 3M‚. The choice of 2 is somewhat arbitrary, though it is a convenient choice because of the definition

of rh below. This definition, however, is only applicable to spherical galaxies, thereby leading to the alternate

definitio of influence radius, rh.

The alternative influence radius, rh, is determined dynamically. It is defined such that the velocity of a

circular orbit about the SBH from that distance, vc “
a

GM‚{rh, is equal to σ “ vrms{
?

3.

rh ”
GM‚

σ2
« 10.8

ˆ

M‚

108M@

˙ˆ

σ

200 km s´1

˙´2

pc (Merritt 2.12)

σ is typically taken to be the rms, line-of-sight velocity of stars within the aperature, which should be

centered on the SBH. This is called the aperture dispersion.

σ2 “

A

v2
los

E

(2.1)

2.2.1 Primary mass determination methods: Stellar and gas kinematics

A common error is determining the mass of an SBH without being able to resolve the influence radius, rh.

The telescope must have an angular resolution exceeding

θ À
rh
D
« 0.022

ˆ

M‚

108M@

˙ˆ

σ

200 km s´1

˙´2ˆ
D

10 Mpc

˙´1

(Merritt 2.20)

If the influence radius is well resolved, one expects a Keplerian rise in velocities of stars (v2 “ GM‚{r),

leading to the definition of rh above. One should be skeptical of claims of resolving the influence radius and

SBH mass in the literature. See Figure 2.5 in the text, which shows how bad some of the published data are.

In the case of galaxies with spherical symmetry, the centripetal motion of the gas near the SBH is

v2
c prq “

GpM‚ `M‹q

r
(Merritt 2.22)
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2.2.3 Mass determination based on empirical correlations

2.3 Supermassive black holes in the Local Group

2.4 Phenomenology

2.4.2 Mass–velocity dispersion relation

The M‚–σ relation is an empirical correlation between the mass of a galaxy’s SBH, and the velocity dispersion

of the stars in that galaxy. Typically, σ is measured as the aperture dispersion.

The correlation is very tight, and can be expressed as

M‚

108M@

“ p1.66˘ 0.24q

ˆ

σ

200 km s´1

˙4.86˘0.43

(Merritt 2.33)

2.4.3 Significance of the phenomenological relations

The tight correlation in M‚–σ is quite puzzling, as one would think the velocities of stars far from the SBH

would not be significantly affected by its mass.

A loose explanation works two other correlations together:

Mbulge9L
5{4 & L9σ4 ùñ Mbulge9σ

5. (Merritt 2.36)

This is very close to the observed relation, but one would not expect such a tight correlation from these.

An alternative explanation involves a negative feedback mechanism. By some mechanism, a black hole stops

its own growth.

Let L be the energy released in growing an SBH with mass Mptq, and let η be the accretion efficiency

(« 10´1). Then we have the expression

L “ η 9Mc2. (Merritt 2.37)

Now, this is making a major assumption. It depends on almost all of the potential energy in the gas being

released in the form of light. This would not happen if the gas fell straight in, but if it were a gradual process

(as an accretion disc would be), then it works.

If we assume 9M to be roughly constant, then we can integrate Lptq to obtain the energy released during

formation
ż T

0

Ldt “ ηMpT qc2 “ ηM‚c
2.

Consider that the bulge has a potential energy GM2
bulge{Rbulge, which, by the virial theorem is equal to twice

the kinetic energy, or Mbulgeσ
2.
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If we take the ratio of the energy released and the total gravitational potential energy of the bulge, we get

Ereleased

Ebulge
«

ηM‚c
2

GM2
bulge{Rbulge

« η
M‚

Mbulge

c2

σ2
« 225

ˆ

η

0.1

˙ˆ

M‚{Mbulge

10´3

˙ˆ

σ

200 km s´1

˙´2

" 1,

(Merritt 2.38)

which tells us that the energy released is much greater than that stored in the bulge.

There is more than enough energy released in growing an SBH to unbind the entire bulge. Silk & Rees

(1998) made the argument that the SBH accretes at the Eddington limit:

Ledd “
4πGmpM‚c

σe
« 3.2ˆ 1012

ˆ

M‚

108M@

˙

L@ (Merritt 2.39)

where mp is the mass of a proton.

If we ask what SBH mass would be required to produce enough energy to unbind the bulge in a single

crossing time, we wind up with the result

M‚ «
σeσ

5

4πG2mpc
« 3ˆ 105

ˆ

σ

200 km s´1

˙5

M@. (Merritt 2.42)

This is essentially the M‚–σ relation, with one caveat: the constant of proportionality is too small, by roughly

103.

Andrew King proposed in 2003, that momentum is the important factor here, not energy. He proposed

that the gas driven by SBH radiation will cool efficiently, and that the bulk flow is momentum driven. His

proposed equation of motion is

d

dt

´

R 9R
¯

`
GM‚

R
“ ´2σ2

ˆ

1´
M‚

Mσ

˙

, (Merritt 2.46)

where

Mσ ”
fgσe
πG2mp

σ4 « 2ˆ 108

ˆ

fg
0.1

˙ˆ

σ

200 km s´1

˙4

M@, (Merritt 2.47)

and fg is the cosmic baryon fraction (the ratio of ordinary matter to all matter). The typically assumed

value is fg « 0.16, which leaves us with a slope on the order of what we expect. However, no mention is

made in the book of the discrepancy in the exponent here (4) versus what is observed (4.86˘ 0.43).

2.5 Evidence for intermediate-mass black holes

Class Mass Range

stellar-mass 5–20 M@

intermediate-mass 102–106 M@

super-massive ą 106 M@

Table 2.1: Classification of black holes by mass

http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1998A%26A...331L...1S&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1998A%26A...331L...1S&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf
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2.6 Evidence for binary and multiple supermassive black holes

SBH Masses in AGN

AGN show continuum emission from their nuclei, i.e. emission with a spectrum characteristic of hot gas at

a range of temperatures. This is believed to arise from an accretion disc.

Broad emission lines (Hα, Hβ, . . . ) originating from broad emission line regions (BLR) are believed to

consist of gas clouds orbiting well within the influence radius, but outside the accretion disc.

We could measure the mass of the SBH within some AGN using the relation

GM‚ “ f ˆRBLR ˆ v
2
RMS, (2.2)

where vRMS could be measured by the Doppler effect. One issue is that RBLR is smaller than the influence

radius, and cannot be resolved. A workaround is found by

RBLR “ cτ, (2.3)

where τ is the time lag between a variation in the continuum near the SBH, and a variation in the BLR

luminosity. This works because of the finite speed of light.

2.7 Gravitational waves

The amplitude, h, of a gravitational wave is a dimensionless quantity given by

h «
G

c4

:Q

D
«
GMQ

c2D

v2

c2
, (Merritt 2.55)

where v is the internal velocity of the source, MQ is the portion of the source’s mass (in units of mass, not

just 0–1) participating in the quadrupolar motions, and D is the distance to the source.

To understand the detector size needed to observe a gravitational wave, consider the ideal case, where the

entire mass is participating in quadrupolar motions (MQ “M12), and the binary is located at a distance D

from the observer and a from each other. Then we have v2 « GM12{a, and from (Merritt 2.55) we have

h «
GM12

c2D

GM12

ac2

«
G2

c4
M2

12a
´1D´1

« 2ˆ 10´16

ˆ

M12

10´8M@

˙2ˆ
a

mpc

˙´1ˆ
D

100Mpc

˙´1

(Merritt 2.58)

If you measure the rate-of-change of the frequency of gravitational waves from a binary black hole, you will
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not get its individual mass, but instead a combination of the two, called the “chirp mass”, which is given by

Mch “
5

d

pM1M2q
3

M1 `M2
. (2.4)
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