
Chapter 1

Special relativity

1.1 Fundamental principles of special relativity (SR) theory

Special relativity can be summarized by two fundamental postulates:

1. The principle of relativity (Galileo), which states that no experiment may measure the absolute velocity

of an observer.

2. The universality of the speed of light (Einstein), which states that the speed of light is constant when

measured from any inertial reference frame.

1.2 Definition of an inertial observer in SR

When we say “observer”, what we really mean is a coordinate system. Thus an inertial observer is a

coordinate system that meets the following 3 criteria:

1. The distance between two spatial points P1 and P2 is independent of time.

2. Time is synchronized and moves at the same rate at all spatial points.

3. At any constant time, space is Euclidean.

It follows from these criteria that the observer must be unaccelerated.

1.3 New units

The speed of light, c, is approximately 3.00ˆ 108 ms´1 in SI units. However, these units predate relativity,

and are very inconvenient. Life becomes easier if we define our units around c, such that c ” 1.
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This can be done by repurposing the meter as a measure of time as well. We thereby define the meter as

“the time it takes light to travel 1 meter”. Thus the speed of light becomes

c “
1 m

1 m
.

Indeed, it turns out in SR that time is most conveniently measured in distance (c “ 3.00ˆ 1010 cm), and in

GR mass is as well (G{c´2 “ 7.425ˆ 10´29 cm g´1).

1.4 Spacetime diagrams

1.5 Construction of the coordinates used by another observer

1.6 Invariance of the interval

For two nearby events, we can define the invariant interval, defining a 4D Minskowski spacetime:

ds2 “ ´pcdtq2 ` dx2 ` dy2 ` dz2 ,

or when we set c ” 1:

ds2 “ ´dt2 ` dx2 ` dy2 ` dz2 . (Schutz 1.1)

This notation can be simplified be defining

ηµν “ diagp´1, 1, 1, 1q “

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

; ds2 “
3
ÿ

µ“0

3
ÿ

ν“0

ηµν dxµ dxν

When we want to find ds̄2, we can consider the fact that each of its components, dx̄α, is a linear combination

of the components of ds2,

dx̄α “
3
ÿ

β“0

aαβx
β .

Now, when we consider the square of dx̄α, the cross terms make it a quadratic function. Since the sum of

four quadratics (the four dx̄α’s) is also a quadratic, we can write ds̄2 as

ds̄ “
3
ÿ

α“0

3
ÿ

β“0

Mαβpdx
αqpdxβq (Schutz 1.2)
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If are talking about light, ds2 “ 0, and so we can say

ds2 “ 0 “ ´dt2 ` dr2 ùñ dt “ dr

Now by looking at Exercise 8 in Section 1.14, we see that

ds̄2 “M00pdrq
2

` 2

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

`

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj , (Schutz 1.3)

where

M0i “ 0 (Schutz 1.4a)

and

Mij “ ´pM00qδij , (Schutz 1.4b)

where δij is the Kronecker delta.

1.7 Invariant hyperbolae

1.8 Particularly important results

1.9 The Lorentz transformation

1.10 The velocity-composition law

1.11 Paradoxes and physical intuition

1.12 Further reading

1.13 Appendix: The twin ‘paradox’ dissected

Consider two twins, Joe and Ed. Joe goes off in a straight line traveling at a speed of p24{25qc for 7 years,

as measured on his clock, then instantaneously reverses and returns at half the speed. Ed remains at home.

When they return, what is the difference in ages between Joe and Ed?

τ1 “ 7 yr. t1 “ τ1γ1, where γ1 “
”

1´
`

24
25

˘2
ı´1{2

. So t1 “ 25 yr.

t2 “ 2t1 “ 50 yr.
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τ2 “ t2γ
´1
2 , where γ1 “

”

1´
`

12
25

˘2
ı´1{2

. So τ2 “ 2
?

481yr « 44 yr. Finally, τ “ τ1 ` τ2 « 51 yr, and

t “ t1 ` t2 “ 75 yr, so Ed ages t´ τ « 24 years more than Joe.

1.14 Exercises

1 Convert the following to units in which c “ 1, expressing everything in terms of m and kg.

(Note that c “ 1 ùñ 1 « 3ˆ 108 m s´1 « p3ˆ 108q´1m´1 s

(a) 10 J

10 J “ 10 N m “ 10 kg m2 s´2 « 10 kg m2 s´2 ¨ pp3ˆ 108q´1m´1 sq2

« 10 kgp3ˆ 108q´2 “ 10 kg

ˆ

1

9
ˆ 10´16

˙

« 1.11ˆ 10´16 kg

(b) 100 W

100 W “ 100 kg m2 s´3 « 100 kg m2 s´3 ¨ pp3ˆ 108q´1m´1 sq3

« 100 kg m´1p3´3 ˆ 10´24q “
100

27
ˆ 10´24kg m´1 « 3.7ˆ 10´24 kg m´1

2 Convert the following from natural units (c “ 1) to SI units:

(a) A velocity v “ 10´2.

v “ 10´2 “ 10´2c “ 10´23ˆ 108 m s´1 “ 3ˆ 106 m s´1

(b) Pressure P “ 1019kg m´3.

P “ 1019kg m´3 « 1019kg m´3p3ˆ 108 m s´1q2

« 1019kg m´3p9ˆ 1016 m2 s´2q “ 9ˆ 1035 N m2

3 Draw the t and x axes of the spacetime coordinates of an observer O and then draw:

(a) The world line of O’s clock at x “ 1 m.

4 Write out all the terms of the following sums, substituting the coordinate names pt, x, y, zq for px0, x1, x2, x3q:

(a)
ř3
α“0 Vα dxα “ V0 dt` V1 dx` V2 dy ` V3 dz.

(b)
ř3
i“1pdx

iq2 “ dx2 ` dy2 ` dz2 “ dr2.

5

(a) Use the spacetime diagram of an observer O to describe the following experiment performed by O. Two

bursts of particles of speed v “ 0.5 are emitted from x “ 0 at t “ ´2 m, one traveling in the `x direction

and the other in the ´x direction. These encounter detectors located at x “ ˘2 m. After a delay of 0.5 m of

time, the detectors send signals back to x “ 0 at speed v “ 0.75.

See figure below
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Exercise 3

(b) The signals arrive back at x “ 0 at the same event. (Make sure your spacetime diagram shows this!) From

this the experimenter concludes that the particle detectors did indeed send out their signals simultaneously,

since he knows they are equal distances from x “ 0. Explain why this conclusion is valid.

Assuming he knows the signals traveled with equal speeds, and the detectors are an equal distance away,

then they must have been emitted simultaneously, in order for them to arrive at x “ 0 simultaneously.

(c) A second observer Ō moves with speed v “ 0.75 in the ´x direction relative to O. Draw the spacetime

diagram of Ō and in it depict the experiment performed by O. Does Ō conclude that particle detectors sent

out their signals simultaneously? If not, which signal was sent first.

See the diagram below. On it, I have drawn lines t̄left and t̄right (note that they are parallel to the x̄ axis).

As you can see from the plot, the left emission occurs before the right emission.

(d)

Using O, the distance is

∆s2 “ ∆x2 “ 16 m2.



6 CHAPTER 1. SPECIAL RELATIVITY

Using Ō, we first need to find x̄ta,bu and t̄ta,bu. We use the Lorentz transformation to do this.

t̄ “ γpt´ vxq

x̄ “ γpx´ vtq

Using this, we find

t̄a “
16
?

7

7
t̄b “

4
?

7

7

x̄a “
´31

?
7

14
x̄b “

?
7

14

This gives us a distance of

∆s̄2 “ ´p∆t̄q2 ` p∆x̄q2 “ 16 m2,

which is of course what we expect.

−10 −5 0 5 10
x(m)

−10

−5

0

5

10

t(
m
)

t̄

x̄

d1

d2
γout

γin

t̄left

t̄right

Exercise 5

6 Show that Equation (Schutz 1.2) contains only Mαβ`Mβα when α ‰ β, not Mαβ and Mβα independently.

Argue that this enables us to set Mαβ “Mβα without loss of generality.
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When we expand the summation in (Schutz 1.2), there is no point where

ds̄2 “ . . .`Mααpdx
αq2 `Mααpdx

αq2 ` . . .

occurs, because a double summation only contains Mαα once. If it did, we could absorb the two Mαβ terms

into a single one. Therefore we can assert the first point.

Now we consider the second point. If we expand the summation, assuming now that an Mαβ and Mβα term

only occur when α ‰ β, then we see

ds̄2 “ . . .`Mαβpdx
αqpdxβq `Mβαpdx

βqpdxαq ` . . .

“ . . .` pMαβ `Mβαq

”

pdxαqpdxβq
ı

` . . .

“ . . .`X
”

pdxαqpdxβq
ı

` . . . .

Now, what really matters in this summation is the value of X “ Mαβ `Mβα, not the individual values of

Mαβ and Mβα. Therefore we can choose, without loss of generality, Mαβ “ Mβα “ X{2, thereby asserting

the second point.

7 In the discussion leading up to Equation (Schutz 1.2), assume that the coordinates of Ō are given as the

following linear combinations of those O:

t̄ “ αt` βx,

x̄ “ µt` νx,

ȳ “ ay,

z̄ “ bz,

where α, β, µ, ν, a, and b may be functions of the velocity ~v of Ō relative to O, but they do not depend on

the coordinates. Find the values of Mαβ of Equation (Schutz 1.2).

ds̄2 “ ´pdt̄q2 ` pdx̄q2 ` pdȳq2 ` pdz̄q2

“ ´pα dt` β dxq2 ` pµdt` ν dxq2 ` pa dyq2 ` pbdzq2

“ ´α2 dt2 ´ αβ dtdx´ β2 dx2 ` µ2 dt2 ` µν dtdx` ν2 dx2 ` a2 dy2 ` b2 dz2

“ pµ2 ´ α2qdt2 ` pµν ´ αβqdtdx` pν2 ´ β2qdx2 ` a2 dy2 ` b2 dz2

M00 “ µ2 ´ α2

M01 “M10 “
µν ´ αβ

2

M11 “ ν2 ´ β2

M22 “ a2

M33 “ b2,
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and all other Mαβ “ 0.

8

(a) Derive Equation (Schutz 1.3) from (Schutz 1.2) for general Mαβ .

Equation (Schutz 1.3) is just an expansion of the summation in (Schutz 1.2).

We start by taking out the dt2 term, which corresponds to α “ β “ 0, which gives us

ds̄2 “M00pdtq
2 ` . . . ,

now we use the equivalence of dt and dr to make the substitution

ds̄2 “M00pdrq
2 ` . . . .

For the middle terms, we use the fact that Mαβ “ Mβα, and look at only the terms where one of α and β

is zero. The symmetry means we can write M0i “ Mi0, and pull out a 2 because there are twice as many

terms, giving us

ds̄2 “M00pdrq
2

` 2

¨

˝

3
ÿ

i“1

M0ipdx
iqpdtq

˛

‚

` . . . .

Now we use the equivalence of dt and dr once again, and pull the term out of the sum, giving us

ds̄2 “M00pdrq
2

` 2

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

` . . . .

Finally, we simply include the terms which have not yet been accounted for, which are all the spacial-only

terms, which arrives us back at Equation (Schutz 1.3):

ds̄2 “M00pdrq
2

` 2

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

`

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj .

(b) Since ds̄2 “ 0 in Equation (Schutz 1.3), for any dxi, replace dxi with ´dxi, and subtract that result
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from the original equation. This will establish that M0i “ 0.

ds̄2 “M00pdrq
2

´ 2

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

`

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj .

ds̄2 ´ ds̄2 “ 0 “��
���0M00pdrq

2

` 4

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

`
���

���
���

0
3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj .

0 “ �4

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚��dr

Now there are two possibilities. In one case, dxi ” 0, but that is a trivial solution and in general is not true.

The other case is that M0i ” 0, which means we can simplify Equation (Schutz 1.3) to

ds̄2 “M00pdrq
2

`

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj .

(c) Use the result of part (b) with ds̄2 “ 0 to establish Equation (Schutz 1.4b).

ds̄2 “ 0 “M00pdrq
2 `

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj

ùñ ´M00pdrq
2 “

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj ,

now if we expand pdrq2, we see that there can only be non-zero Mij when i “ j, and so

´M00

´

pdx2q ` pdy2q ` pdz2q
¯

“

3
ÿ

i“1

Miipdx
iq2

ùñ ´pM00qδij “Mij ,

which is simply Equation (Schutz 1.4b).

9 Explain why the line PL in Figure 1.7 is drawn in the manner described in the text.

10 For the pairs of events whose coordinates pt, x, y, zq in some frame are given below, classify their separa-

tions as timelike, spacelike, or null.



10 CHAPTER 1. SPECIAL RELATIVITY

(a) p0, 0, 0, 0q and p´1, 1, 0, 0q:

ds2 “ ´p0` 1q2 ` p0´ 1q2 ` p0´ 0q2 ` p0´ 0q2 “ ´1` 1` 0` 0 “ 0 ùñ null

(b) p1, 1,´1, 0q and p´1, 1, 0, 2q:

ds2 “ ´p1` 1q2 ` p1´ 1q2 ` p´1´ 0q2 ` p0´ 2q2 “ ´4` 0` 1` 4 “ 1 ùñ spacelike

(c) p6, 0, 1, 0q and p5, 0, 1, 0q:

ds2 “ ´p6´ 5q2 ` p0´ 0q2 ` p1´ 1q2 ` p0´ 0q2 “ ´1` 0` 0` 0 “ ´1 ùñ timelike

(d) p´1, 1,´1, 1q and p4, 1,´1, 6q:

ds2 “ ´p´1´ 4q2 ` p1´ 1q2 ` p´1` 1q2 ` p1´ 6q2 “ ´25` 0` 0` 25 “ 0 ùñ null

11 Show that the hyperbolae ´t2 ` x2 “ a2 and ´t2 ` x2 “ ´b2 are asymptotic to the lines t “ ˘x,

regardless of a and b.

We will generalize a and ´b with a new constant, α P R, and so we have: ´t2 ` x2 “ α2. Now if we solve

for t, we get t “ ˘
?
x2 ´ α2.

Now take the limit of t as xÑ8 (or ´8, they are equivalent since x is real and squared), which gives us:

lim
xÑ8

t “ lim
xÑ8

˘
a

x2 ´ α2 “ ˘
?
x2 “ ˘x.

Note that we dropped the α2 term in the limit, as it was being subtracted from a number approaching

infinity, and was therefore negligible.

12

(a) Use the fact that the tangent to the hyperbola DB in Figure 1.14 is the line of simultaneity for Ō to

show that the time interval AE is shorter than the time recorded on Ō’s clock as it moved from A to B.

If we look at the figure, we see that AD and AB lie along the same hyperbola. This means that when O

measures dt “ AD, and Ō measures dt̄ “ AB, the two measurements are the same. Since dt “ AE is clearly

shorter than dt “ AD, then dt “ AD ă dt̄ “ AB.

(b) Calculate that

pds2qAC “ p1´ v
2qpds2qAB

pds2qAC “ ´pdtq
2
AC

pds2qAB “ pds̄
2
qAB

“ ´pdt̄q2AB

“ ´pγpdt´ v dxqq2 “ ´pγpdt´ v ¨ 0qq2 “ ´pγ dtq2 “ γ2r´pdtq2s

“ γ2pds2qAC “
pds2qAC

1´ v2
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ùñ pds2qAC “ p1´ v
2qpds2qAB

13 The Half-life of the elementary particle called the π-meson (or pion) is 2.5ˆ 10´8 s when the pion is at

rest relative to the observer measuring its decay time. Show, by the principle of relativity, that pions moving

at speed v “ 0.999 must have a half-life of 5.6ˆ 10´7 s, as measured by an observer at rest.

dt “ γ dt̄ “
2.5ˆ 10´8 s
?

1´ 0.9992
« 5.59ˆ 10´7 s

14 Suppose the velocity v of Ō relative to O is small, |v| ! 1. Show that the time dilation, Lorentz

contraction, and velocity-addition formulae can be approximated by respectively:

(a) dt « p1` 1
2v

2qdt̄

γ “ p1´ v2q´1{2 “

8
ÿ

k“0

ˆ

´1{2

k

˙

xk “ 1` p´1{2qp´v2q `
p´1{2qp´1{2´ 1q

2!
p´v2q2 ` . . . « 1`

1

2
v2

dt “ γ dt̄ «

ˆ

1`
1

2
v2
˙

dt̄

(b) dx « p1´ 1
2v

2qdx̄

γ´1 “ p1´ v2q1{2 “
8
ÿ

k“0

ˆ

1{2

k

˙

xk “ 1` p1{2qp´v2q `
p1{2qp1{2´ 1q

2!
p´v2q2 ` . . . « 1´

1

2
v2

dx “ γ´1 dx̄ «

ˆ

1´
1

2
v2
˙

dx̄

(c) W 1 «W ` v ´WvpW ` vq (with |W | ! 1 as well)

W 1 “
W ` v

1`Wv
“ pW ` vqp1`Wvq´1

p1`Wvq´1 “

8
ÿ

k“0

ˆ

´1

k

˙

pWvqk “ 1´Wv `
1

2
¨ 1p1` 1qpWvq2 ´

1

6
¨ 1p1` 1qp1` 2qpWvq3 ` . . .

« 1´Wv ` pWvq2

W 1 « pW ` vqp1´Wv ` pWvq2q “W ` v ´WvpW ` vq ` pWvq2pW ` vq

«W ` v ´WvpW ` vq

What are the relative errors in these approximations when |v| “W “ 0.1?

TODO

15 Suppose that the velocity v of Ō relative to O is nearly that of light, |v| “ 1´ ε, 0 ă ε ! 1. Show that

the same formulae of Exercise 14 become

(a) dt « dt̄ {
?

2ε
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v “ 1´ ε ùñ v2 “ p1´ εq2 “ 1´ 2ε` ε2

ùñ 1´ v2 “ 1´ p1´ 2ε` ε2q “ 2ε´ ε2 “ 2ε

ˆ

1´
ε

2

˙

γ “ p1´ v2q´1{2 “

˜

2ε

ˆ

1´
ε

2

˙

¸´1{2

“
1
?

2ε

ˆ

1´
ε

2

˙´1{2

«
1
?

2ε

dt “ γ dt̄ «
dt̄
?

2ε

(b) dx « dx̄
?

2ε

v “ 1´ ε ùñ v2 “ p1´ εq2 “ 1´ 2ε` ε2

ùñ 1´ v2 “ 1´ p1´ 2ε` ε2q “ 2ε´ ε2 “ 2ε

ˆ

1´
ε

2

˙

γ´1{2 “ p1´ v2q1{2 “

˜

2ε

ˆ

1´
ε

2

˙

¸1{2

“
?

2ε

ˆ

1´
ε

2

˙1{2

«
?

2ε

dx “ γ´1 dx̄ « dt̄
?

2ε

(c) W 1 « 1´ εp1´W q{p1`W q

TODO

What are the relative errors on these approximations when ε “ 0.1 and W “ 0.9?

TODO

16 Use the Lorentz transformation, Equation 1.12, to derive (a) the time dilation, and (b) the Lorentz

contraction formulae. Do this by identifying pairs of events where the separations (in time or space) are

to be compared, and then using the Lorentz transformation to accomplish the algebra that the invariant

hyperb b olae had been used for in the text.

(a) To derive the time dilation formula, we choose two events that occur at x “ c, and times t1 and t2. Thus,

from O’s frame, the time elapsed between these two events is ∆t “ t2 ´ t1, and the distance between them

is ∆x “ 0. Another observer, Ō, moves with some velocity v relative to O. As it passes through the lines

t “ t1 and t “ t2, its clock moves forward by a time ∆τ “ t̄2 ´ t̄1. We now use the Lorentz transformation

to write ∆τ in terms of O’s coordinates.

∆τ “ t̄2 ´ t̄1 “ γ
“

pt2 ´ vx2q ´ pt1 ´ vx1q
‰

“ γ
“

pt2 ´ t1q ` pvx1 ´ vx2q
‰

“ γr∆t` v∆xs “ γr∆t` v ¨ 0s

“ γ∆t

and thus we have arrived at the formula for time dilation.

(b) To derive the Lorentz contraction formula, we take a slightly different approach. In the O frame, a stick
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lies parallel to x, such that its length ` “ x2 ´ x1. In this frame, the world lines of the two ends of the stick

form vertical lines. Another observer, Ō, moves with a velocity v, relative to O. Two events, A and B occur

on either end of the stick, such that Ō observes the two events to be simultaneous. Thus, from the Ō frame,

the events are located a distance ∆x̄ “ ¯̀ apart, and ∆t̄ “ 0. However, from the O frame, the events occur

a distance ∆x “ ` apart, and a time separation ∆t ‰ 0.

` “ x2 ´ x1 “ γ
“

px̄2 ´ vt̄2q ´ px̄1 ´ vt̄1q
‰

“ γ
“

px̄2 ´ x̄1q ` vpt̄1 ´ t̄2q
‰

“ γ ¯̀

ùñ ¯̀“
`

γ

17 A lightweight pole, 20 m long, lies on the ground next to a barn 15 m long. An Olympic athlete picks up

the pole, carries it far away, and runs with it toward the end of the barn at a speed 0.8. His friend remains

at rest, standing by the door of the barn. Attempt all parts of this question, even if you can’t answer some.

(a) How long does the friend measure the pole to be, as it approaches the barn?

We use the Lorentz contraction equation to find the length the friend measures.

¯̀“ `{γ “ `
a

1´ v2 “ 20 m
a

1´ 0.82 “ 12 m

(b) The barn door is initially open and, immediately after the runner and pole are entirely inside the barn,

the friend shuts the door. How long after the door is shut does the front of the pole hit the other end of the

barn, as measured by the friend? Compute the interval between the events of shutting the door and hitting

the wall. Is it spacelike, timelike, or null?

From the runner’s point of view, we must consider the length contraction of the barn

(c) In the reference frame of the runner, what is the length of the barn and the pole?

(d) Does the runner believe that the pole is entirely inside the barn when its front hits the end of the barn?

Can you explain why?

(e) After the collision, the pole and runner come to rest relative to the barn. From the friend’s point of view,

the 20 m pole is now inside a 15 m barn, since the barn door was shut before the pole stopped. How is this

possible? Alternatively, from the runner’s point of view, the collision should have stopped the pole before

the door closed, so the door could not be closed at all. Was or was not the door closed with the pole inside?

(f) Draw a spacetime diagram from the friend’s point of view and use it to illustrate and justify all your

conclusions.

18

(a) The Einstein velocity-addition law, Equation 1.13, has a simpler form if we introduce the concept of the

velocity parameter u, defined by the equation

v “ tanhu.
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Notice that for ´8 ă u ă 8, the velocity is confined to the acceptable limits ´1 ă v ă 1. Show that if

v “ tanhu

and

w “ tanhU,

then Equation 1.13 implies

w1 “ tanhpu` Uq.

This means that velocity parameters add linearly.

There exists an identity:

tanhpx` yq “
tanhpxq ` tanhpyq

1` tanhpxq tanhpyq
.

If we simply use x “ u and y “ U , then we arrive at

tanhpu` Uq “
tanhpuq ` tanhpUq

1` tanhpuq tanhpUq
“ w1

(b) Use this to solve the following problem. A star measures a second star to be moving away at speed

v “ 0.9. The second star measures a third to be receding in the same direction at 0.9. Similarly, the third

measures a fourth, and so on, up to some large number N of stars. What is the velocity of the Nth star

relative to the first? Give an exact answer and an approximation useful for large N .

Let wN be the velocity of the Nth star relative to the original star, which we will call star 0. We will use

an induction proof to find an expression for wN . The base case is trivial, w0 “ 0, as the star does not move

relative to itself. For the next case, w1 “ v, we still aren’t really doing velocity addition, so we will skip to

the w2 case, where things get interesting, though we will later show that the general expression holds for w0

and w1.

For w2, we simply use the Einstein velocity-addition law:

w2 “ tanhpu` Uq “ tanh
´

tanh´1 v ` tanh´1 w1
¯

“ tanh
´

2 tanh´1 v
¯

.

Now I will prove that this is one instance of a general expression, that wN “ tanh
´

N tanh´1 v
¯

.

wN “ tanh
´

N tanh´1 v
¯

ùñ tanh´1 wN “ N tanh´1 v

ùñ tanh´1 wN ` tanh´1 v “ N tanh´1 v ` tanh´1 v

ùñ tanh´1 wN ` tanh´1 v “ pN ` 1q tanh´1 v

ùñ tanh
´

tanh´1 wN ` tanh´1 v
¯

“ tanh
´

pN ` 1q tanh´1 v
¯

ùñ wN`1 “ tanh
´

pN ` 1q tanh´1 v
¯

.
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If you can believe the last step, then this is proof that it works for all N . The last step is saying that, if we

have a star N , moving away from star 0 at a speed wN , and another star N ` 1, moving away from star N

at a speed v, then star N ` 1 as observed from star 0 is given by the Einstein velocity-addition law, meaning

we can rewrite that expression as wN`1.

Now I’d like to go back and show that this works for N “ 0 and N “ 1. For N “ 1, we get

w1 “ tanh
´

1 tanh´1 v
¯

“ v,

which is what we would expect, and for N “ 0, we get

w0 “ tanh
´

0 tanh´1 v
¯

“ 0,

which we also expect. So the general expression,

wN “ tanh
´

N tanh´1 v
¯

,

holds true for all non-negative integers N . We can also write this more elegantly as

wN “ tanhpNuq.

Now we want to consider the behaviour at large N . We first write tanh in its exponential form, as

wN “
1´ expp´2Nuq

1` expp´2Nuq
.

When N is very large, then the exponential in the bottom term goes to zero, allowing us to rewrite it as

wN « 1´ expp´2Nuq.

We can go a step further. Since v “ 0.9, u « 1.47, which we can neglect for large N , and so we finally arrive

at

wN « 1´ expp´2Nq.

19

(a) Using the velocity parameter (u) introduced in Exercise 18, show that the Lorentz transformation equa-

tions, Equation 1.12, can be put in the form

t̄ “ t coshu´ x sinhu ȳ “ y

x̄ “ ´t sinhu` x coshu z̄ “ z

We start by putting γ in terms of u.

γ “ p1´ v2q´1{2 “ p1´ tanh2 uq´1{2 “
1

sechu
“ coshu.
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Now we can substitute this into the Lorentz transformation equations

t̄ “ γpt´ vxq “ coshupt´ x tanhuq “ t coshu´ x sinhu

x̄ “ γpx´ vtq “ coshupx´ t tanhuq “ x coshu´ t sinhu

(b) Use the identity cosh2 u´ sinh2 u “ 1 to demonstrate the invariance of the interval from these equations.

ds2 “ ´dt2 ` dx2 ` dy2 ` dz2

ds̄2 “ ´pdt coshu´ dx sinhuq
2
` pdx coshu´ dt sinhuq

2
` dy2 ` dz2

“ ´

´

dt2 cosh2 u´((((
((((dx dt sinhu coshu` dx2 sinh2 u

¯

`

´

dx2 cosh2 u´(((
((((

(
dtdx sinhu coshu` dt2 sinh2 u

¯

` dy2 ` dz2

“ ´dt2

���
���

���´

cosh2 u´ sinh2 u
¯

` dx2

���
���

���´

cosh2 u´ sinh2 u
¯

` dy2 ` dz2

“ ds2

(c) Draw as many parallels as you can between the geometry of spacetime and ordinary two-dimensional

Euclidean geometry, where the coordinate transformation analogous to the Lorentz transformation is

x̄ “ `x cos θ ` y sin θ,

ȳ “ ´x sin θ ` y cos θ.

What is the analog of the interval? Of the invariant hyperbolae?

The analog of the interval would be

dr̄2 “ dx̄2 ` dȳ2 “ pdx cos θ ` dy sin θq2 ` pdy cos θ ´ dx sin θq2`

“ dx2 cos2 θ `((((
((((2 dx dy sin θ cos θ ` dy2 sin2 θ

` dy2 cos2 θ ´((((
((((2 dx dy sin θ cos θ ` dx2 sin2 θ

“ dx2 psin2 θ ` cos2 θq ` dy2 psin2 θ ` cos2 θq

“ dx2 ` dy2

The analog of the invariant hyperbola would be the invariant circle, as x̄ and ȳ are both equations of a circle.

20 Write the Lorentz transformation equations in matrix form.

t̄ “ γpt´ vxq t̄ “ γt´ γvx` 0y ` 0z

x̄ “ γpx´ vtq x̄ “ ´γvt` γx` 0y ` 0z

ȳ “ y ȳ “ y

z̄ “ z z̄ “ z
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¨

˚

˚

˚

˚

˚

˚

˝
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˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

γ ´γv 0 0

´γv γ 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

t

x

y

z

˛

‹

‹

‹

‹

‹

‹

‚

21

(a) Show that if the two events are timelike separated, there is a Lorentz frame in which they occur at the

same point, i.e. at the same spatial coordinate values.

If the two events are timelike separated, then it must be possible to have an object with a worldline which

crosses the two points, as it is inside the light cone. If such an object exists, then we can draw a Lorentz

frame for it, so its time axis, t̄ is that line, meaning x̄ “ 0 for both events.

(b) Similarly, if the two events are spacelike separated, there is a Lorentz frame in which they occur simul-

taneously.

If the two events are spacelike separated, then it must be possible to draw a coordinate frame where x̄ has

slope v in O’s frame. This means that t̄ “ 0 for both events, and so they are simultaneous.


