
Chapter 2

Vector analysis in special relativity

2.1 Definition of a vector

2.2 Vector algebra

2.3 The four-velocity

An object’s four velocity, denoted ~U , is the vector tangent to its world line, with unit length. This means it

extends one unit in time, and zero in space, so it is timelike.

For an accelerated particle (which we have not considered up to now), we may not be able to define an

inertial frame, but we can define a momentarily comoving reference frame (MCRF) which, as the

name suggests, moves with the same velocity as the observer for an infinitesimal period of time. We can

therefore construct a continuous sequence of MCRFs for any object. If an object has MCRF O, then its

four-velocity is defined to be the basis vector ~e0.

2.4 The four-momentum

Analogous to the three-momentum, we define the four-momentum to be

~p “ m~U. (Schutz 2.19)

It has components

~pÑ
O
pE, p1, p2, p3q. (Schutz 2.20)

Calling p0 “E” is no accident, it is in fact the energy. There is an interesting consequence to this: since

vectors are invariant with respect to reference frame, but vector components are not, this means that the

four-momentum does not change in different reference frames, but the energy does. One example would be

1
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the doppler effect, which causes the color (or energy) of a photon to shift depending on the radial velocity

of the source and observer.

2.5 Scalar product

~A ¨ ~B “ ´pA0B0q ` pA1B1q ` pA2B2q ` pA3B3q

2.6 Applications

2.7 Photons

~x ¨ ~x “ 0, so we cannot define ~U for photons. We can, however, define ~p. Since ~p ¨ ~p “ ´m2, and photons are

massless, we have ~p ¨ ~p “ 0.

2.8 Further reading

2.9 Exercises

2 Identify the free and dummy indices in the following equations, and write equivalent expressions with

different indices. Also, write how many equations are represented by each expression.

Note, I will express the set of free indices by F and the set of dummy indices as D, and I will use the original

index names.

(a) AαBβ “ 5 ùñ AβBα “ 5 (16 equations, F “ tα, βu, D “ Ø)

(b) Aµ̄ “ Λµ̄νA
ν ùñ Aν̄ “ Λν̄µA

µ (4 equations, F “ tµ̄u, D “ tνu).

(c) TαµλAµC
γ

λ “ Dγα ùñ T ηφθAφC
ζ
θ “ Dζη (16 equations, F “ tα, γu, D “ tµ, λu)

(d) Rµν ´
1
2gµν “ Gµν ùñ Rχε ´

1
2gχε “ Gχε (16 equations, F “ tµ, νu, D “ Ø)

4 Given vectors ~AÑO p5,´1, 0, 1q and ~B ÑO p´2, 1, 1,´6q, find the components in O of

(a) ´6 ~AÑO p´30, 6, 0,´6q

(b) 3 ~A` ~B ÑO p13,´2, 1,´3q

(c) ´6 ~A` 3 ~B ÑO p´36, 9, 3,´24q

6 Draw a spacetime diagram from O’s reference frame. There are two other frames, Ō and ¯̄O, which are each

moving with velocity 0.6 in the `x direction from each respective frame. Plot each frame’s basis vectors, as

observed by O.
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Figure 2.1: Exercise 6

See Figure 2.1.

9 Prove, by writing out all the terms that

3
ÿ

ᾱ“0

¨

˝

3
ÿ

β“0

ΛᾱβA
β~eᾱ

˛

‚“

3
ÿ

β“0

¨

˝

3
ÿ

ᾱ“0

ΛᾱβA
β~eᾱ

˛

‚

3
ÿ

ᾱ“0

¨

˝

3
ÿ

β“0

ΛᾱβA
β~eᾱ

˛

‚“

3
ÿ

ᾱ“0

´

Λᾱ0A
0~eᾱ ` Λᾱ1A

1~eᾱ ` Λᾱ2A
2~eᾱ ` Λᾱ3A

3~eᾱ

¯

“ Λ0̄
0A

0~e0̄ ` Λ0̄
1A

1~e0̄ ` Λ0̄
2A

2~e0̄ ` Λ0̄
3A

3~e0̄

` Λ1̄
0A

0~e1̄ ` Λ1̄
1A

1~e1̄ ` Λ1̄
2A

2~e1̄ ` Λ1̄
3A

3~e1̄

` Λ2̄
0A

0~e2̄ ` Λ2̄
1A

1~e2̄ ` Λ2̄
2A

2~e2̄ ` Λ2̄
3A

3~e2̄

` Λ3̄
0A

0~e3̄ ` Λ3̄
1A

1~e3̄ ` Λ3̄
2A

2~e3̄ ` Λ3̄
3A

3~e3̄

“ Λ0̄
0A

0~e0̄ ` Λ1̄
0A

0~e1̄ ` Λ2̄
0A

0~e2̄ ` Λ3̄
0A

0~e3̄

` Λ0̄
1A

1~e0̄ ` Λ1̄
1A

1~e1̄ ` Λ2̄
1A

1~e2̄ ` Λ3̄
1A

1~e3̄

` Λ0̄
2A

2~e0̄ ` Λ1̄
2A

2~e1̄ ` Λ2̄
2A

2~e2̄ ` Λ3̄
2A

2~e3̄
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` Λ0̄
3A

3~e0̄ ` Λ1̄
3A

3~e1̄ ` Λ2̄
3A

3~e2̄ ` Λ3̄
3A

3~e3̄

“

3
ÿ

β“0

´

Λ0̄
βA

β~e0̄ ` Λ1̄
βA

β~e1̄ ` Λ2̄
βA

β~e2̄ ` Λ3̄
βA

β~e3̄

¯

“

3
ÿ

β“0

¨

˝

3
ÿ

ᾱ“0

ΛᾱβA
β~eᾱ

˛

‚

11 Let Λᾱβ be the matrix of the Lorentz transformation from O to Ō, given in Equation 1.12. Let ~A be an

arbitrary vector with components pA0, A1, A2, A3q in frame O.

(a) Write down the matrix of Λνµ̄p´vq.

Intuitively, it should appear the same as Λᾱβ , but with the negative signs removed. More rigorously,

it is given by the matrix inverse of Λᾱβ , as their product should be the identity matrix. I have used a

computer algebra system (Wolfram Alpha) to take the inverse of this matrix symbolically, confirming

my suspicion:

Λνµ̄p´vq “

¨

˚

˚

˚

˚

˚

˚

˝

γ vγ 0 0

vγ γ 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

(b) Find Aᾱ for all ᾱ.

Aᾱ “ ΛᾱβA
β

A0̄ “ γpA0 ´ vA1q

A1̄ “ γpA1 ´ vA0q

A2̄ “ A2

A3̄ “ A3

(c) Verify Equation 2.18 by performing the sum for all values of ν and α.

To simplify things, I do this via matrix multiplication

ΛᾱβpvqΛ
ν
µ̄p´vq “

¨

˚

˚

˚

˚

˚

˚

˝

γ2 ´ v2γ2 vγ2 ´ vγ2 0 0

vγ2 ´ vγ2 γ2 ´ v2γ2 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚
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“

¨

˚

˚

˚

˚

˚

˚

˝

γ2p1´ v2q 0 0 0

0 γ2p1´ v2q 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

“ δνα

(d) Write down the Lorentz transformation matrix from Ō to O, justifying each term.

It should just be Λνµ̄p´vq. I’m not sure what else to say at this point.

(e) Using the result from part (d), find Aβ from Aᾱ. How does this relate to Equation 2.18?

ΛβᾱA
ᾱ “

¨

˚

˚

˚

˚

˚

˚

˝

γ vγ 0 0

vγ γ 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

γpA0 ´ vA1q

γpA1 ´ vA0q

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

γ2pA0 ´ vA1q ` vγ2pA1 ´ vA0q ` 0` 0

vγ2pA0 ´ vA1q ` γ2pA1 ´ vA0q ` 0` 0

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

A0pγ2 ´ v2γ2q `A1pvγ2 ´ vγ2q

A0pvγ2 ´ v2γ2q `A1pγ2 ´ vγ2q

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

A0pγ2 ´ v2γ2q

A1pγ2 ´ v2γ2q

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

A0

A1

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“ Aβ

Since Aᾱ “ Λᾱβpvq, this goes to show that Λν
β̄
p´vqΛβ̄αp´vqA

λ “ Aλ ùñ Λν
β̄
p´vqΛβ̄αp´vq “ δνα .

(f) Verify in the same manner as (c) that

Λνβ̄pvqΛ
ᾱ
νp´vq “ δᾱβ̄

My matrix multiplication approach will just give me the same result as before. Perhaps another approach

was intended?

(g) Establish that

~eα “ Λβ̄α~eβ̄ “ Λβ̄αΛνβ̄~eν “ δνα~eν

Aβ̄ “ Λβ̄αA
α “ Λβ̄αΛαµ̄A

µ̄ “ δβ̄µ̄A
µ̄
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14 The following matrix gives a Lorentz transformation from O to Ō:

¨

˚

˚

˚

˚

˚

˚

˝

1.25 0 0 0.75

0 1 0 0

0 0 1 0

0.75 0 0 1.25

˛

‹

‹

‹

‹

‹

‹

‚

(a) What is the velocity of Ō relative to O?

This would correspond to a Lorentz boost along the z-axis, meaning

Λᾱβpvq “

¨

˚

˚

˚

˚

˚

˚

˝

γ 0 0 ´vγ

0 1 0 0

0 0 1 0

´vγ 0 0 γ

˛

‹

‹

‹

‹

‹

‹

‚

,

and thus we have γ “ 1.25 and ´vγ “ 0.75. Solving for v, we get

´vγ “
3

4
ùñ v “ ´

3

4γ
“ ´

3 ¨ 4

4 ¨ 5
“ ´

3

5
.

So Ō is moving with speed 0.6 relative to the ´z-axis of O.

(b) What is the inverse matrix to the given one?

Numerically, it comes out to be
¨

˚

˚

˚

˚

˚

˚

˝

1.25 0 0 ´0.75

0 1 0 0

0 0 1 0

´0.75 0 0 1.25

˛

‹

‹

‹

‹

‹

‹

‚

,

which makes sense, when you consider that the inverse matrix should be a Lorentz transformation with

the velocity negated.

(c) Find the components in O of ~AÑŌ p1, 2, 0, 0q.

~AÑ
O

¨

˚

˚

˚

˚

˚

˚

˝

1.25 0 0 ´0.75

0 1 0 0

0 0 1 0

´0.75 0 0 1.25

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1

2

0

0

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

1.25

2

0

´0.75

˛

‹

‹

‹

‹

‹

‹

‚

15

(a) Compute the four-velocity components in O of a particle whose speed is v in the `x-direction relative
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to O, using the Lorentz transformation.

~U “ ~e0̄

Uα “ Λαβ̄p~e0̄q
β̄ “ Λα0̄ ,

U0 “ γ

U1 “ vγ

U2 “ U3 “ 0

(b) Generalize to arbitrary velocities v, where |v| ă 1.

Λαβ̄pvq “

¨

˚

˚

˚

˚

˚

˚

˝

γ γvx γvy γvz

γvx γ 0 0

γvy 0 γ 0

γvz 0 0 γ

˛

‹

‹

‹

‹

‹

‹

‚

.

U0 “ γ U1 “ γvx U2 “ γvy U3 “ γvz

(c) Use this result to express v as a function of the components tUαu.

v “ vx~e1 ` vy~e2 ` vz~e3

vi “
U i

γ

v “
1

γ
U i~ei

(d) Find the three-velocity v of a particle with four-velocity components p2, 1, 1, 1q.

U0 “ γ “ 2, and U i “ 1, so

v “
1

2
~ei

17

Not sure how to approach this problem.

(a) Prove that any timelike vector ~U for which U0 ą 0 and ~U ¨ ~U “ ´1 is the four-velocity of some world

line.

(b) Use this to prove that for any timelike vector ~V there is a Lorentz frame in which the ~V has zero spatial

components.

19 A body is uniformly accelerated if the four-vector ~a has constant spatial direction and magnitude, ~a ¨~a “

α2 ě 0.
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(a) Show that this implies the components of ~a in the body’s MCRF are all constant, and that these are

equivalent to the Galilean “acceleration”.

We normalize the vector ~a by dividing each of its terms by the magnitude of the vector, so

aλ

α
.

Since α is constant, and also the direction is constant, this means that the above expression is also constant,

as the normalized components tell you about the direction. If we multiply a constant by a constant, we

should still get a constant, so we multiply the above expression by α, getting aλ to be constant.

In the MCRF of an object, dτ “ dt, and so we can write

~a “
d~U

dt
“

˜

0,
dU1

dt
,

dU2

dt
,

dU3

dt

¸

,

which is analogous to the Galilean acceleration.

(b) A body is uniformly accelerated with α “ 10 m{s2. It starts from rest, and falls for a time t. Find its

speed as a function of t, and find the time to reach v “ 0.999.

~U Ñ
MCRF

p1, 0, 0, 0q

Ñ
O
pγ, γv, 0, 0q

d~U

dτ
Ñ

MCRF
p0, α, 0, 0q

Ñ
O
pγ, γα, 0, 0q

Ux “

ż t

0

dUx

dτ
dτ “

ż t

0

γα
dt

γ
“

ż t

0

α dt “ αt

“ γv “
v

?
1´ v2

v2 “ pαtq2p1´ v2q “ pαtq2 ´ pαtvq2

v2p1` pαtq2q “ pαtq2

v2 “
pαtq2

1` pαtq2
ùñ v “

d

pαtq2

1` pαtq2

To find the time to reach v “ 0.999, we go back to the expression γv “ αt, solve for t, and substitute for v

and α. Note that in natural units, α “ 10 m{s2c´2 « 1.11ˆ 10´16 m´1

t “
v

α
?

1´ v2
“

0.999

1.11ˆ 10´16 m´1
?

1´ 0.9992
« 2.01ˆ 1017 m.

24 Show that a positron and electron cannot annihilate to form a single photon, but they can annihilate to

form two photons.

We consider the center of momentum frame, where
ř

~ppiq ÑCM pEtotal, 0, 0, 0q. Without loss of generality,
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we assume that the velocities of the two particles are equal and opposite, such that

~pe` ÑCM mepγ, γv, 0, 0q, ~pe´ ÑCM mepγ,´γv, 0, 0q.

The photon they create will have to have a momentum of ~pγ,single ÑCM phν, hν, 0, 0q. By conservation of

four-momentum, we have

~pe` ` ~pe´ “ ~pγ,single

p~pe` ` ~pe´q ¨ p~pe` ` ~pe´q “ ~pγ,single ¨ ~pγ,single

p~pe` ¨ ~pe`q ` p~pe´ ¨ ~pe´q ` p~pe` ¨ ~pe´q “ 0

´m2
e ´m

2
e ´m

2
e “ 0 ùñ me “ 0!

Since we know that me is in fact non-zero, this cannot possibly happen.

Now consider the scenario wherein two photons are created, moving in opposite directions. Then they

would have momenta: ~pγ,1 ÑCM phν, hν, 0, 0q and ~pγ,2 ÑCM phν,´hν, 0, 0q. Invoking conservation of four-

momentum as before, we get

~pe` ` ~pe´ “ ~pγ,1 ` ~pγ,2

p~pe` ` ~pe´q ¨ p~pe` ` ~pe´q “ p~pγ,1 ` ~pγ,2q ¨ p~pγ,1 ` ~pγ,2q

´3m2
e “ p~pγ,1 ¨ ~pγ,1q ` p~pγ,1 ¨ ~pγ,2q ` p~pγ,2 ¨ ~pγ,2q

“ 0` p´h2ν2 ´ h2ν2q ` 0 “ ´2h2ν2,

so we end up with 3m2
e “ 2h2ν2, meaning two photons are produced with E2 “ 3

2m
2
e, which is entirely

reasonable.

25

(a) Consider a frame Ō moving with a speed v along the x-axis of O. Now consider a photon moving at an

angle θ from O’s x-axis. Find the ratio of its frequency in Ō and in O.

We must first construct the particle’s four-momentum. In the case where the photon was moving along the

x-axis (see Section 2.7), it had been found that the four-momentum was

~pÑ
O
pE,E, 0, 0q,

as this satisfied

~p ¨ ~p “ ´E2 ` E2 “ 0. (Schutz 2.37)

Now that the photon is moving at an angle θ from the x-axis, we need to redistribute the 3-momentum

accordingly. No specification was given as photon’s angle in the y- or z-axis, so without loss of generality, I

assume it is constrained to the x-y plane. This means we can write the four-momentum as

~pÑ
O
pE,E cos θ,E sin θ, 0q,
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which you can easily confirm satisfies ~p ¨ ~p “ 0.

Now we may apply the Lorentz transformation Λ0̄
αpvq to find the photon’s energy as observed by Ō, and

from that the frequency.

p0̄ “ Ē “ Λ0̄
αp

α “ γp0 ´ vγp1 ` 0` 0 “ γE ´ vγE cos θ

ùñ hν̄ “ γhν ´ vγhν cos θ

ùñ
ν̄

ν
“ γ ´ vγ cos θ “

1´ v cos θ
?

1´ v2

(b) Even when the photon moves perpendicular to the x-axis (θ “ π{2) there is a frequency shift. This is

the transverse Doppler shift, which is a result of time dilation. At which angle θ must the photon move such

that there is no Doppler shift between O and Ō?

To do this, we simply set ν̄{ν “ 1, and solve for θ.

1 “
1´ v cos θ
?

1´ v2
ùñ cos θ “ 1´

a

1´ v2

ùñ θ “ ˘ arccos
´

1´
a

1´ v2
¯

(c) Now use Equations 2.35 and 2.38 to find ν̄{ν.

Recall that ~U ÑO pγ, vγ, 0, 0q. Using Equation 2.35 we have

Ē “ hν̄ “ ´pE,E cos θ,E sin θ, 0q ¨ pγ, vγ, 0, 0q

“ ´p´pEγq ` Eγv cos θq “ Eγp1´ v cos θq “ hνγp1´ v cos θq

ν̄

ν
“

1´ v cos θ
?

1´ v2

26 Calculate the energy required to accelerate a particle of rest mass m ą 0 from speed v to speed v ` δv

(δv ! v), to first order in δv. Show that it would take infinite energy to accelerate to c.

From the four-momentum we have Ev “ mγ, and from that

Ev`δv “
m

a

1´ pv ` δvq2
.

If we do a Taylor expansion on p1´ pv ` δvq2q´1{2 we get

1
?

1´ v2
`

v δv

p1´ v2q3{2
`O

´

v2
¯

,

so

Ev`δv «
m

?
1´ v2

`
mv δv

p1´ v2q3{2

∆E “ Ev`δv ´ Ev «
mv δv

p1´ v2q3{2
“ mγ3v δv .

As v Ñ c, γ Ñ8 and therefore ∆E Ñ8.
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30 A rocket ship has four-velocity ~U ÑO p2, 1, 1, 1q, and it passes a cosmic ray with four-momentum

~p Ñ Op300, 299, 0, 0q ˆ 10´27kg. Compute the energy of the ray as measured by the rocket, using two

different methods.

(a) Find the Lorentz transformation from O to the rocket’s MCRF, and from that find the components pᾱ.

The Lorentz transformation for a boost in the x, y, and z directions is given by

Λβ̄α “

¨

˚

˚

˚

˚

˚

˚

˝

γ γvx γvy γvz

γvx γ 0 0

γvy 0 γ 0

γvz 0 0 γ

˛

‹

‹

‹

‹

‹

‹

‚

.

If we write out the terms of
¨

˚

˚

˚

˚

˚

˚

˝

1

0

0

0

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

γ γvx γvy γvz

γvx γ 0 0

γvy 0 γ 0

γvz 0 0 γ

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

2

1

1

1

˛

‹

‹

‹

‹

‹

‹

‚

,

then we are left with a system of equations

1 “ γp2` vx ` vy ` vzq,

0 “ γp2vx ` 1q,

0 “ γp2vy ` 1q,

0 “ γp2vz ` 1q.

Since γ may never be zero, we divide the last 3 terms by γ to obtain

2vi ` 1 “ 0 ùñ vi “ ´
1

2
,

and plugging into the first equation gives γ “ 2. From this we see that our Lorentz transformation matrix is

Λβ̄α “

¨

˚

˚

˚

˚

˚

˚

˝

2 ´1 ´1 ´1

´1 2 0 0

´1 0 2 0

´1 0 0 2

˛

‹

‹

‹

‹

‹

‹

‚

.

Now to find the energy as observed by the rocket, we need to find Ē “ p0̄

p0̄ “ Λ0̄
αp

α “ 2p0 ´ p1 ´ p2 ´ p3

“ p2 ¨ 300´ 1 ¨ 299´ 1 ¨ 0´ 1 ¨ 0q ˆ 10´27kg “ 3.01ˆ 10´25 kg “ Ē

(b) Use Schutz’s Equation 2.35.
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Ē “ ´~p ¨ ~Uobs “ ´p´p300 ¨ 2q ` p299 ¨ 1q ` p0 ¨ 1q ` p0 ¨ 1qq ˆ 10´27kg

“ 3.01ˆ 10´25 kg

(c) Which is quicker? Why?

Using Equation 2.35 was much quicker, as it was derived to handle this special case.

32 Consider a particle with charge e and mass m, which begins at rest, but scatters a photon with frequency

νi (Compton scattering). The photon comes off at an angle θ from the direction of the initial photon’s path.

Use conservation of four-momentum to find the scattered photon’s frequency, νf .

We will invoke: conservation of four-momentum and ~p ¨ ~p “ ´m2. ~pi and ~pf denote the initial and final

photon, and ~pe and ~pe1 denote the electron before and after collision.

~pi Ñ
O
pEi, Ei, 0, 0q

~pe Ñ
O
pm, 0, 0, 0q

~pf Ñ
O
pEf , Ef cos θ, Ef sin θ, 0q

~pi ` ~pe “ ~pf ` ~pe1

~pe1 “ ~pi ` ~pe ´ ~pf

~pe1 ¨ ~pe1 “ p~pi ` ~pe ´ ~pf q ¨ p~pi ` ~pe ´ ~pf q

´m2 “ ~pi ¨ ~pi ` ~pe ¨ ~pe ` ~pf ¨ ~pf ` 2p~pi ¨ ~pi ´ ~pi ¨ ~pf ´ ~pe ¨ ~pf q

“ 0´m2 ` 0` 2p~pi ¨ ~pi ´ ~pi ¨ ~pf ´ ~pe ¨ ~pf q

0 “ ~pi ¨ ~pi ´ ~pi ¨ ~pf ´ ~pe ¨ ~pf

“ ´Eim´ p´EiEf ` EiEf cos θq ` Efm

“ mpEf ´ Eiq ` EiEf p1´ cos θq

mpEi ´ Ef q “ EiEf p1´ cos θq

mhpνi ´ νf q “ h2νiνf p1´ cos θq

νi ´ νf
νiνf

“ h
1´ cos θ

m

1

νf
´

1

νi
“ h

1´ cos θ

m

1

νf
“

1

νi
` h

1´ cos θ

m


