Chapter 3

Tensor analysis in special relativity

3.3 The $\binom{0}{1}$ tensors: one-forms

The symbol ${ }^{\sim}$ is used to denote a one-form, as \leadsto is used to denote a vector. So \tilde{p} is a one-form, or a type $\binom{0}{1}$ tensor.

Normal one-forms

Let \mathcal{S} be some surface. $\forall \vec{V}$ tangent to $\mathcal{S}, \tilde{p}(\vec{V})=0 \Longrightarrow \tilde{p}$ is normal to \mathcal{S}.
Furthermore, if \mathcal{S} is a closed surface \& \tilde{p} is normal to $\mathcal{S} \& \forall \vec{U}$ pointing outwards from $\mathcal{S}, \tilde{p}(\vec{U})>0 \Longrightarrow \tilde{p}$ is an outward normal one-form.

3.5 Metric as a mapping of vectors into one-forms

Normal vectors and unit normal one-forms

\vec{V} is normal to a surface if \tilde{V} is normal to the surface. They are said to be unit normal if their magnitude is ± 1, so $\vec{V}^{2}=\tilde{V}^{2}= \pm 1$.

- A time-like unit normal has magnitude -1
- A space-like unit normal has magnitude +1
- A null normal cannot be a unit normal, because $\vec{V}^{2}=\tilde{V}^{2}=0$

3.10 Exercises

(a)

$$
\begin{aligned}
\tilde{p}\left(A^{\alpha} \vec{e}_{\alpha}\right) & =A^{\alpha} \tilde{p}\left(\vec{e}_{\alpha}\right)=\tilde{p}\left(A^{0} \vec{e}_{0}+A^{1} \vec{e}_{1}+A^{2} \vec{e}_{2}+A^{3} \vec{e}_{3}\right) \\
& =A^{0} \tilde{p}\left(\vec{e}_{0}\right)+A^{1} \tilde{p}\left(\vec{e}_{1}+A^{2} \tilde{p}\left(\vec{e}_{2}\right)+A^{3} \tilde{p}\left(\vec{e}_{3}=A^{\alpha} \tilde{p}\left(\vec{e}_{\alpha}\right)=A^{\alpha} p_{\alpha} \in \mathbb{R}\right.\right.
\end{aligned}
$$

(b)

$$
\begin{gathered}
\tilde{p} \underset{\mathcal{O}}{\rightarrow}(-1,1,2,0) \\
\vec{A} \underset{\mathcal{O}}{\rightarrow}(2,1,0,-1) \\
\vec{B} \underset{\mathcal{O}}{\rightarrow}(0,2,0,0) \\
\tilde{p}(\vec{A})=-2+1+0+0=-1 \\
\tilde{p}(\vec{B})=0+2+0+0=2 \\
\tilde{p}(\vec{A}-3 \vec{B})=\tilde{p}(\vec{A})-3 \tilde{p}(\vec{B})=-1-3 \cdot 2=-7
\end{gathered}
$$

4 Given the following vectors

$$
\begin{array}{ll}
\vec{A} \underset{\mathcal{O}}{ }(2,1,1,0) & \vec{B} \underset{\mathcal{O}}{ }(1,2,0,0) \\
\vec{C} \underset{\mathcal{O}}{\longrightarrow}(0,0,1,1) & \vec{D} \underset{\mathcal{O}}{\rightarrow}(-3,2,0,0)
\end{array}
$$

(Note that all parts were done with the assistance of numpy.)
(a) Show that they are linearly independent.

We do this by constructing a matrix, \mathbf{X}, whose columns correspond to the four vectors. If the determinant of \mathbf{X} is non-zero, then that means the vectors are linearly independent.

$$
\operatorname{det}(\mathbf{X})=\operatorname{det}\left(\begin{array}{cccc}
2 & 1 & 0 & -3 \\
1 & 2 & 0 & 2 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=-8
$$

(b) Find the components of \tilde{p} if

$$
\tilde{p}(\vec{A})=1, \quad \tilde{p}(\vec{B})=-1, \quad \tilde{p}(\vec{C})=-1, \quad \tilde{p}(\vec{D})=0
$$

We do this by observing that $\tilde{p}=A^{\alpha} p_{\alpha}$, and so we have a system of four equations, which we can write in
matrix form as

$$
\begin{aligned}
\left(\begin{array}{c}
\vec{A} \\
\vec{B} \\
\vec{C} \\
\vec{D}
\end{array}\right) \tilde{p} & =\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
0
\end{array}\right) \\
\Longrightarrow \tilde{p} & =\left(\begin{array}{l}
\vec{A} \\
\vec{B} \\
\vec{C} \\
\vec{D}
\end{array}\right)^{-1}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
-\frac{1}{4} \\
-\frac{3}{8} \\
+\frac{15}{8} \\
-\frac{23}{8}
\end{array}\right)
\end{aligned}
$$

(c) Find $\tilde{p}(\vec{E})$, where $\vec{E} \rightarrow_{\mathcal{O}}(1,1,0,0)$.

$$
\tilde{p}(\vec{E})=p_{\alpha} E^{\alpha}=-\frac{5}{8}
$$

(d) Determine whether $\tilde{p}, \tilde{q}, \tilde{r}$, and \tilde{s} are linearly independent.

We do this by first setting up a system of equations for each of \tilde{q}, \tilde{r}, and \tilde{s}, as was done for \tilde{p}, and solving. I will refer to the matrix whose rows were $\vec{A}, \vec{B}, \vec{C}$, and \vec{D} as \mathbf{X}.

$$
\left.\begin{array}{cc}
\mathbf{X} \tilde{q}=\left(\begin{array}{c}
+0 \\
+0 \\
+1 \\
-1
\end{array}\right) & \mathbf{X} \tilde{r}=\left(\begin{array}{l}
+2 \\
+0 \\
+0 \\
+0
\end{array}\right) \\
\tilde{q}=\left(\begin{array}{c}
+\frac{1}{4} \\
-\frac{1}{8} \\
-\frac{3}{8} \\
+\frac{11}{8}
\end{array}\right) & \tilde{\mathbf{s}} \tilde{s}=\left(\begin{array}{l}
-1 \\
-1 \\
+0 \\
+0
\end{array}\right) \\
+0 \\
+0 \\
+2 \\
+2
\end{array}\right) \quad \tilde{s}=\left(\begin{array}{c}
-\frac{1}{4} \\
-\frac{3}{8} \\
-\frac{1}{8} \\
+\frac{1}{8}
\end{array}\right)
$$

Now if the matrix whose columns are comprised of $\tilde{p}, \tilde{q}, \tilde{r}$, and \tilde{s} has a non-zero determinant, then the four covectors must be linearly independent.

$$
\operatorname{det}\left(\begin{array}{llll}
\tilde{p} & \tilde{q} & \tilde{r} & \tilde{s}
\end{array}\right)=\frac{1}{4},
$$

and so they are indeed linearly independent.
(a) Show that $\tilde{p} \neq \tilde{p}\left(\vec{e}_{\alpha}\right) \tilde{\lambda}^{\alpha}$ for arbitrary \tilde{p}.

Let us choose $\tilde{p} \rightarrow_{\mathcal{O}}(0,1, e, \pi)$, as a counter-example.

$$
\begin{aligned}
p_{\alpha} \tilde{\lambda}^{\alpha} & \underset{\mathcal{O}}{\rightarrow} \\
& \xrightarrow{\boldsymbol{O}}(1,-1,(1,0,0)+1 \cdot(1,-1,0,0)+e \cdot(0,0,1,-1)+\pi \cdot(0,0,1,1) \\
& (1,-\underset{\mathcal{O}}{ } \tilde{p}
\end{aligned}
$$

(b) $\tilde{p} \rightarrow_{\mathcal{O}}(1,1,1,1)$. Find l_{α} such that

$$
\tilde{p}=l_{\alpha} \tilde{\lambda}^{\alpha}
$$

We may do this with a simple matrix inversion. We define $\boldsymbol{\Lambda}$ to be the matrix whose rows are formed by $\tilde{\lambda}^{\alpha}$.

$$
\boldsymbol{\Lambda} l=p \Longrightarrow l=\boldsymbol{\Lambda}^{-1} p=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

8 Draw the basis one-forms $\tilde{\mathrm{d}} t$ and $\tilde{\mathrm{d}} x$ of frame \mathcal{O}.
They are

$$
\begin{gathered}
\tilde{\mathrm{d}} t \underset{\mathcal{O}}{\rightarrow}(1,0,0,0), \\
\tilde{\mathrm{d}} \underset{\underset{\mathcal{O}}{\rightarrow}}{(0,1,0,0)},
\end{gathered}
$$

and they are shown in Figure 3.1.
9 At the points \mathcal{P} and \mathcal{Q}, estimate the components of the gradient $\tilde{\mathrm{d}} T$.
Recall that $\tilde{\mathrm{d}} T \rightarrow_{\mathcal{O}}\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right)$, and so $\Delta T=\tilde{\mathrm{d}} T_{\alpha} x^{\alpha}=\tilde{\mathrm{d}} T_{x} \Delta x+\tilde{\mathrm{d}} T_{y} \Delta y$.
Now if we move only in the x direction from one of the points, we move some distance Δx, change our temperature by Δt, and $\Delta y=0$. Likewise for a movement in the y direction. Thus we can say

$$
\begin{array}{ll}
\Delta T=\tilde{\mathrm{d}} T_{x} \Delta x & \Delta T=\tilde{\mathrm{d}} T_{y} \Delta y \\
\tilde{\mathrm{~d}} T_{x}=\frac{\Delta T}{\Delta x} & \tilde{\mathrm{~d}} T_{y}=\frac{\Delta T}{\Delta y}
\end{array}
$$

In Figure 3.2, from \mathcal{P} I move a distance $\Delta x=0.5$, which causes a temperature change of $\Delta T=-7$, giving $\tilde{\mathrm{d}} T_{x}=-14$. Then I move a distance $\Delta y=0.5$ and get the same temperature change of $\Delta T=-7$, and so I conclude that at point $\mathcal{P}, \tilde{\mathrm{d}} T \rightarrow_{\mathcal{O}}(-14,-14)$.
At \mathcal{Q}, we are in a flat region where $T=0$. If we move any non-zero distance Δx or Δy, so long as it does not cross the $T=0$ isotherm, we have a $\Delta T=0$, and thus $\tilde{\mathrm{d}} T p \rightarrow_{\mathcal{O}}(0,0)$.
13 Prove that $\tilde{\mathrm{d}} f$ is normal to surfaces of constant f.
If we move some small distance $\Delta x^{\alpha}=\epsilon$, then there will be no change in the value of f, and thus we can say $\partial f / \partial x^{\alpha}=0$, so

$$
\tilde{\mathrm{d}} f=\frac{\partial f}{\partial x^{\alpha}} \tilde{\mathrm{d}} x^{\alpha}=0 \tilde{\mathrm{~d}} x^{\alpha}=0
$$

Figure 3.1: Problem 8: Basis one-forms of $\mathcal{O} . \tilde{\mathrm{d}} t$ is given in blue and $\tilde{\mathrm{d}} x$ in red.

Since $\tilde{\mathrm{d}} f$ is defined to be normal to a surface if it is zero on every tangent vector, we have shown that $\tilde{\mathrm{d}} f$ is normal to any surface of constant f.
14

$$
\tilde{p} \underset{\mathcal{O}}{\rightarrow}(1,1,0,0) \quad \tilde{q} \underset{\mathcal{O}}{\rightarrow}(-1,0,1,0)
$$

Prove by giving two vectors \vec{A} and \vec{B} as arguments that $\tilde{p} \otimes \tilde{q} \neq \tilde{q} \otimes \tilde{p}$. Then find the components of $\tilde{p} \otimes \tilde{q}$.

$$
\begin{aligned}
(\tilde{p} \otimes \tilde{q})(\vec{A}, \vec{B}) & =\tilde{p}(\vec{A}) \tilde{q}(\vec{B})=A^{\alpha} p_{\alpha} B^{\beta} q_{\beta}=\left(A^{0}+A^{1}\right)\left(-B^{0}+B^{2}\right), \\
& =-A^{0} B^{0}+A^{0} B^{2}-A^{1} B^{0}+A^{1} B^{2} \\
(\tilde{q} \otimes \tilde{p})(\vec{A}, \vec{B}) & =\tilde{q}(\vec{A}) \tilde{p}(\vec{B})=A^{\alpha} q_{\alpha} B^{\beta} p_{\beta}=\left(-A^{0}+A^{2}\right)\left(B^{0}+B^{1}\right) \\
& =-A^{0} B^{0}-A^{0} B^{1}+A^{2} B^{0}+A^{2} B^{1},
\end{aligned}
$$

And so we see that \otimes is not commutative.
The components of the outer product of two tensors are given by the products of the components of the

Figure 3.2: Problem 9: Isotherms.
individual tensors. Thus we can write the components as a 4×4 matrix.

$$
(\tilde{p} \otimes \tilde{q})_{\alpha \beta}=p_{\alpha} q_{\beta}=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

18
(a) Find the one-forms mapped by \mathbf{g} from

$$
\begin{array}{ll}
\vec{A} \underset{\mathcal{O}}{ }(1,0,-1,0), & \vec{B} \underset{\mathcal{O}}{ }(0,1,1,0) \\
\vec{C} \underset{\mathcal{O}}{ }(-1,0,-1,0), & \vec{D} \underset{\mathcal{O}}{\rightarrow}(0,0,1,1)
\end{array}
$$

In general,

$$
\vec{V} \underset{\mathcal{O}}{\rightarrow}\left(V^{0}, V^{1}, V^{2}, V^{3}\right) \Longrightarrow \tilde{V}=\mathbf{g} \vec{V} \underset{\mathcal{O}}{ }\left(-V^{0}, V^{1}, V^{2}, V^{3}\right)
$$

and so

$$
\begin{array}{ll}
\tilde{A} \underset{\mathcal{O}}{ }(-1,0,-1,0), & \tilde{B} \overrightarrow{\mathcal{O}}(0,1,1,0), \\
\tilde{C} \underset{\mathcal{O}}{\vec{O}}(1,0,-1,0), & \tilde{D} \underset{\mathcal{O}}{\overrightarrow{0}}(0,0,1,1)
\end{array}
$$

(b) Find the vectors mapped by \mathbf{g} from

$$
\begin{array}{ll}
\tilde{p} \underset{\mathcal{O}}{\rightarrow}(3,0,-1,-1), & \tilde{q} \underset{\mathcal{O}}{\vec{~}}(1,-1,1,1), \\
\tilde{r} \underset{\mathcal{O}}{\vec{~}}(0,-5,-1,0), & \tilde{s} \underset{\mathcal{O}}{\vec{~}}(-2,1,0,0)
\end{array}
$$

By using the inverse tensor in reverse, we have the same effect as before, of negating the first component

$$
\begin{array}{ll}
\vec{p} \underset{\mathcal{O}}{\rightarrow}(-3,0,-1,-1), & \vec{q} \underset{\mathcal{O}}{\rightarrow}(-1,-1,1,1) \\
\vec{r} \underset{\mathcal{O}}{\overrightarrow{\mathcal{O}}}(0,-5,-1,0), & \vec{s} \underset{\mathcal{O}}{\vec{O}}(2,1,0,0)
\end{array}
$$

20
In Euclidean 3-space, vectors and covectors are usually treated as the same, because they transform the same. We will now prove this.
(a) Show that $A^{\bar{\alpha}}=\Lambda^{\bar{\alpha}}{ }_{\beta} A^{\beta}$ and $P_{\bar{\beta}}=\Lambda^{\alpha}{ }_{\bar{\beta}} P_{\alpha}$ are the same transformations if $\left\{\Lambda^{\alpha}{ }_{\bar{\beta}}\right\}$ is equal to the transpose of its inverse.
We can write that last statement as

$$
\Lambda_{\bar{\beta}}^{\alpha}=\left(\left(\Lambda_{\bar{\beta}}^{\alpha}\right)^{-1}\right)^{T}
$$

and we know that

$$
\left(\Lambda_{\bar{\beta}}^{\alpha}\right)^{-1}=\Lambda_{\alpha}^{\bar{\beta}},
$$

and also we know that the Lorentz transformation is symmetric, and so

$$
\left(\Lambda_{\alpha}^{\bar{\beta}}\right)^{T}=\Lambda_{\alpha}^{\bar{\beta}},
$$

which leads us to conclude that $\Lambda^{\alpha}{ }_{\bar{\beta}}=\Lambda^{\bar{\beta}}{ }_{\alpha}$, meaning the two transformations are the same.
(b) The metric has components $\left\{\delta_{i j}\right\}$. Prove that transformations between Cartesian coordinate systems must satisfy

$$
\delta_{\bar{i} \bar{j}}=\Lambda_{\bar{i}}^{k} \Lambda_{\bar{j}}^{l} \delta_{k l}
$$

and that this implies that $\Lambda_{\bar{i}}^{k}$ is an orthogonal matrix.

$$
\delta_{\bar{i} \bar{j}}=\mathbf{g}\left(\vec{e}_{\bar{i}}, \vec{e}_{\bar{j}}\right)=\mathbf{g}\left(\Lambda_{\bar{i}}^{k} \vec{e}_{k}, \Lambda_{\bar{j}}^{l} \vec{e}_{j}\right)=\Lambda_{\bar{i}}^{k} \Lambda_{\bar{j}}^{l} \mathbf{g}\left(\vec{e}_{k}, \vec{e}_{j}\right)=\Lambda_{\bar{i}}^{k} \Lambda_{\bar{j}}^{l} \delta_{k l}
$$

Now show it is orthogonal

21
(a) A region of the $t-x$ plane is bounded by lines $t=0, t=1, x=0$, and $x=1$. Within the plane, find the unit outward normal 1-forms and their vectors for each boundary line.
I define unit outward normals as follows:
Let \mathcal{S} be a closed surface. If, for each \vec{V} tangent to \mathcal{S}, we have $\tilde{p}(\vec{V})=0$, then \tilde{p} is normal to \mathcal{S}.
In addition, if, for each \vec{U} which points outwards from the surface, we have $\tilde{p}(\vec{U})>0$, then \tilde{p} is an outward
normal.
Furthermore, if $\tilde{p}^{2}= \pm 1$, then it is a unit outward normal.
For the problem at hand, I define the region inside the four lines to be Inside, and the region outside to be Outside. For each of the four lines, I draw a vector \vec{V} tangent (parallel) to the line, and \vec{U} pointing outwards (See Figure 3.3).

It helps to look at $t=0$ and $t=1$ together, and likewise for x, so I will start with t. We start with an arbitrary $\tilde{p} \rightarrow_{\mathcal{O}}\left(p_{0}, p_{1}\right)$, and $\vec{V} \rightarrow_{\mathcal{O}}\left(0, V^{1}\right)$, where $V^{1} \neq 0$.

$$
\tilde{p}(\vec{V})=p_{0} \cdot 0+p_{1} V^{1}=0 \Longrightarrow p_{1}=0
$$

so $\tilde{p} \rightarrow_{\mathcal{O}}\left(p_{0}, 0\right)$ is a normal 1 -form to both lines. Now we find the corresponding unit normal, by taking

$$
\tilde{p}^{2}= \pm 1=-\left(p_{0}\right)^{2} \Longrightarrow \tilde{p}^{2}=-1 \& p_{0}= \pm 1
$$

Whether we choose p_{0} to be positive or negative now depends on the line we are looking at, and which direction is outward. For $t=0$, we have a vector $\vec{U}=\left(-U^{0}, U^{1}\right)$, where $U^{0}>0$.

$$
\tilde{p}(\vec{U})=p_{0}\left(-U^{0}\right)+0 \cdot U^{1}>0 \Longrightarrow-p_{0} U^{0}>0 \Longrightarrow p_{0}<0
$$

so for $t=0$ we have $\tilde{p} \rightarrow_{\mathcal{O}}(-1,0)$, and likewise for $t=1$ we have $\tilde{p} \rightarrow_{\mathcal{O}}(1,0)$. To get the associated vectors, we apply the metric $\eta^{\alpha \beta}$, giving us $\vec{p} \rightarrow_{\mathcal{O}}(1,0)$ for $t=0$ and $\vec{p} \rightarrow_{\mathcal{O}}(-1,0)$ for $t=1$.
For $x=0$ and $x=1$, we instead have $\vec{V} \rightarrow_{\mathcal{O}}\left(V^{0}, 0\right)$, and following the same steps as before, we conclude that: for $x=0, \tilde{p} \rightarrow_{\mathcal{O}}(0,-1), \vec{p} \rightarrow_{\mathcal{O}}(0,-1)$, and for $x=1, \tilde{p} \rightarrow_{\mathcal{O}}(0,1), \vec{p} \rightarrow_{\mathcal{O}}(0,1)$.

Figure 3.3: Problem 21.a
(b) Let another region be bounded by the set of points $\{(1,0),(1,1),(2,1)\}$. Find an outward normal for the null boundary and the associated vector.
23
(a) Prove that the set of all $\binom{M}{N}$ tensors forms a vector space, V.

Let T be the set of all $\binom{M}{N}$ tensors, $\mathbf{s}, \mathbf{p}, \mathbf{q} \in T, \vec{A} \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$. For T to be a vector space, we must define the operations of addition, and scalar multiplication (amongst others).

Addition:

$$
\mathbf{s}=\mathbf{p}+\mathbf{q} \Longrightarrow \mathbf{s}(\vec{A})=\mathbf{p}(\vec{A})+\mathbf{q}(\vec{A})
$$

Scalar Multiplication:

$$
\mathbf{r}=\alpha \mathbf{p} \Longrightarrow \mathbf{r}(\vec{A})=\alpha \mathbf{p}(\vec{A})
$$

(b)

Prove that a basis for T is

$$
\left\{\vec{e}_{\alpha} \otimes \ldots \otimes \vec{e}_{\gamma} \otimes \tilde{\omega}^{\mu} \otimes \ldots \otimes \tilde{\omega}^{\lambda}\right\}
$$

Still working on it

24 Given:

$$
M^{\alpha \beta} \rightarrow\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 2 \\
2 & 0 & 0 & 1 \\
1 & 0 & -2 & 0
\end{array}\right)
$$

(a) Find:
(i)

$$
M^{(\alpha \beta)} \rightarrow\left(\begin{array}{cccc}
0 & 1 & 1 & \frac{1}{2} \\
1 & -1 & 0 & 1 \\
1 & 0 & 0 & -\frac{1}{2} \\
\frac{1}{2} & 1 & -\frac{1}{2} & 0
\end{array}\right) ; \quad M^{[\alpha \beta]} \rightarrow\left(\begin{array}{cccc}
0 & 0 & -1 & -\frac{1}{2} \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & \frac{3}{2} \\
\frac{1}{2} & -1 & -\frac{3}{2} & 0
\end{array}\right)
$$

(ii)

$$
M_{\beta}^{\alpha}=\eta_{\beta \mu} M^{\alpha \mu} \rightarrow\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & -1 & 0 & 2 \\
2 & 0 & 0 & 1 \\
1 & 0 & -2 & 0
\end{array}\right)
$$

(iii)

$$
M_{\alpha}^{\beta}=\eta_{\alpha \mu} M^{\mu \beta} \rightarrow\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & -1 & 0 & 2 \\
2 & 0 & 0 & 1 \\
1 & 0 & -2 & 0
\end{array}\right)
$$

(iv)

$$
M_{\alpha \beta}=\eta_{\beta \mu} M_{\alpha}^{\mu} \rightarrow\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 2 \\
2 & 0 & 0 & 1 \\
1 & 0 & -2 & 0
\end{array}\right)
$$

(b) Does it make sense to separate the $\binom{1}{1}$ tensor with components M_{β}^{α} into symmetric and antisymmetric parts?

No, it would not make sense. For one, the notation for (anti)symmetric tensors do not even allow one to write it sensibly $\left(M_{\beta)}^{(\alpha}\right)$. More importantly, one argument refers to vectors, and the other to covectors, so it does not make sense to switch them.
(c)

$$
\eta_{\beta}^{\alpha}=\eta^{\alpha \mu} \eta_{\beta \mu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\delta^{\alpha}{ }_{\beta}
$$

31

Still working on it

34 Define double-null coordinates $u=t-x, v=t+x$ in Minkowski space.
(a) Let \vec{e}_{u} be the vector connecting the (u, v, y, t) coordinates $(0,0,0,0)$ and $(1,0,0,0)$, and let \vec{e}_{v} be the vector connecting $(0,0,0,0)$ and $(0,1,0,0)$. Find \vec{e}_{u} and \vec{e}_{v} in terms of \vec{e}_{t} and \vec{e}_{x}, and plot the basis vectors in a spacetime diagram of the $t-x$ plane.

$$
\begin{array}{ll}
u=t-x=0 \Longrightarrow t=+x & v=t+x=0 \Longrightarrow t=-x \\
u=t-x=1 \Longrightarrow t=1+x & v=t+x=1 \Longrightarrow t=1-x
\end{array}
$$

We draw the vectors \vec{e}_{u} and \vec{e}_{v} in Figure 3.4, such that they point from the appropriate points of intersection on these lines of constant u and v. From this it is obvious that $\vec{e}_{v}+\vec{e}_{u}=\vec{e}_{t}$, and that $\vec{e}_{v}-\vec{e}_{u}=\vec{e}_{x}$, or likewise $\vec{e}_{v}=\vec{e}_{t}-\vec{e}_{u}$ and $\vec{e}_{u}=\vec{e}_{v}-\vec{e}_{x}$. This is a system of 2 equations with two unknowns.

$$
\begin{array}{ll}
\vec{e}_{v}=\vec{e}_{t}-\vec{e}_{v}+\vec{e}_{x} \Longrightarrow & \vec{e}_{v}=\frac{1}{2}\left(\vec{e}_{t}+\vec{e}_{x}\right) \\
\vec{e}_{u}=\frac{1}{2}\left(\vec{e}_{t}+\vec{e}_{x}\right)-\vec{e}_{x} \Longrightarrow & \vec{e}_{u}=\frac{1}{2}\left(\vec{e}_{t}-\vec{e}_{x}\right)
\end{array}
$$

(b) Show that $\vec{e}_{\alpha}, \alpha \in\{u, v, y, z\}$ form a basis for vectors in Minkowski space.

$$
\begin{aligned}
\vec{A}=A^{\alpha} \vec{e}_{\alpha} & =A^{u} \vec{e}_{u}+A^{v} \vec{e}_{v}+A^{y} \vec{e}_{y}+A^{z} \vec{e}_{z} \\
& =\frac{A^{u}}{2}\left(\vec{e}_{t}-\vec{e}_{x}\right)+\frac{A^{v}}{2}\left(\vec{e}_{t}+\vec{e}_{x}\right)+A^{y} \vec{e}_{y}+A^{z} \vec{e}_{z} \\
& =\frac{1}{2}\left(A^{v}+A^{u}\right) \vec{e}_{t}+\frac{1}{2}\left(A^{v}-A^{u}\right) \vec{e}_{x}+A^{y} \vec{e}_{y}+A^{z} \vec{e}_{z}
\end{aligned}
$$

If we let $A^{t}=\frac{1}{2}\left(A^{v}+A^{u}\right)$ and $A^{x}=\frac{1}{2}\left(A^{v}-A^{u}\right)$, then

$$
\vec{A}=A^{\alpha} \vec{e}_{\alpha}=A^{t} \vec{e}_{t}+A^{x} \vec{e}_{x}+A^{y} \vec{e}_{y}+A^{z} \vec{e}_{z}
$$

(c) Find the components of the metric tensor, \mathbf{g} in this new basis.

To make this concise, we will begin with some definitions. Let $w \in\{u, v\}$, and $q \in\{y, z\}$. We also define

$$
\lambda(w) \equiv \begin{cases}-1, & \text { if } w=u \\ +1, & \text { if } w=v\end{cases}
$$

It follows that

$$
\vec{e}_{w}=\frac{1}{2}\left(\vec{e}_{t}+\lambda \vec{e}_{x}\right)
$$

Now we can show that

$$
\begin{aligned}
g_{w w}=\vec{e}_{w} \cdot \vec{e}_{w} & =\frac{1}{2}\left(\vec{e}_{t}+\lambda \vec{e}_{x}\right) \cdot \frac{1}{2}\left(\vec{e}_{t}+\lambda \vec{e}_{x}\right) \\
& =\frac{1}{4}\left[\vec{e}_{t} \cdot \vec{e}_{t}+2 \lambda\left(\vec{e}_{t} \cdot \vec{e}_{x}\right)+\lambda^{2}\left(\vec{e}_{x} \cdot \vec{e}_{x}\right)\right] \\
& =\frac{1}{4}(-1+2 \lambda \cdot 0+1 \cdot 1)=0
\end{aligned}
$$

so $g_{u u}=g_{v v}=0$.
For the u and v cross terms, we have

$$
\begin{aligned}
g_{u v}=g_{v u}=\vec{e}_{u} \cdot \vec{e}_{v} & =\frac{1}{2}\left(\vec{e}_{t}-\vec{e}_{x}\right) \cdot \frac{1}{2}\left(\vec{e}_{t}+\vec{e}_{x}\right) \\
& =\frac{1}{4}\left[\vec{e}_{t} \cdot \vec{e}_{t}+0 \cdot \vec{e}_{t} \cdot \vec{e}_{x}-\vec{e}_{x} \cdot \vec{e}_{x}\right] \\
& =\frac{1}{4}(-1+0-1)=-\frac{1}{2}
\end{aligned}
$$

For the w with y and z cross terms we have

$$
\begin{aligned}
g_{w q}=\vec{e}_{w} \cdot \vec{e}_{q} & =\frac{1}{2}\left(\vec{e}_{t}+\lambda \vec{e}_{x}\right) \cdot \vec{e}_{q} \\
& =\frac{1}{2}\left[\vec{e}_{t} \cdot \vec{e}_{t}+\lambda \vec{e}_{x} \cdot \vec{e}_{x}\right] \\
& =0
\end{aligned}
$$

so $g_{u y}=g_{v y}=g_{u z}=g_{v z}=0$. We also already know $g_{y y}=g_{z z}=1$, and $g_{y z}=g_{z y}=0$, so we can write the components of the metric tensor in this new coordinate system as

$$
g_{\alpha \beta}=\left(\begin{array}{cccc}
0 & -\frac{1}{2} & 0 & 0 \\
-\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(d) Show that \vec{e}_{u} and \vec{e}_{v} are null, but not orthogonal.

$$
\begin{aligned}
& \vec{e}_{u} \cdot \vec{e}_{u}=g_{u u}=0 \Longrightarrow \vec{e}_{u} \text { is null } \\
& \vec{e}_{v} \cdot \vec{e}_{v}=g_{v v}=0 \Longrightarrow \vec{e}_{v} \text { is null }
\end{aligned}
$$

$$
\vec{e}_{u} \cdot \vec{e}_{v}=g_{u v}=-\frac{1}{2} \neq 0 \Longrightarrow \vec{e}_{u} \text { and } \vec{e}_{v} \text { are not orthogonal. }
$$

(e) Compute the four one-forms $\tilde{\mathrm{d}} u, \tilde{\mathrm{~d}} v, \mathbf{g}\left(\vec{e}_{u},\right)$, and $\mathbf{g}\left(\vec{e}_{v},\right)$ in terms of $\tilde{\mathrm{d}} t$ and $\tilde{\mathrm{d}} x$.

$$
\tilde{\mathrm{d}} \phi \rightarrow_{\mathcal{O}}\left(\frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)
$$

so

$$
\begin{array}{ll}
\tilde{\mathrm{d}} t \rightarrow_{\mathcal{O}}(1,0,0,0), & \tilde{\mathrm{d}} x \rightarrow_{\mathcal{O}}(0,1,0,0) \\
\tilde{\mathrm{d}} u \rightarrow_{\mathcal{O}} \frac{1}{2}(1,-1,0,0), & \tilde{\mathrm{d}} u \rightarrow_{\mathcal{O}} \frac{1}{2}(1,1,0,0)
\end{array}
$$

from which it is obvious that

$$
\tilde{\mathrm{d}} u=\frac{1}{2}(\tilde{\mathrm{~d}} t-\tilde{\mathrm{d}} x), \quad \tilde{\mathrm{d}} v=\frac{1}{2}(\tilde{\mathrm{~d}} t+\mathrm{d} x)
$$

Figure 3.4: Problem 34a: Spacetime diagram of double-null coordinate basis vectors in $t-x$ plane.

