
Chapter 3

Tensor analysis in special relativity

3.3 The
`

0
1

˘

tensors: one-forms

The symbol˜is used to denote a one-form, as~ is used to denote a vector. So p̃ is a one-form, or a type
`

0
1

˘

tensor.

Normal one-forms

Let S be some surface.

@~V tangent to S, p̃p~V q “ 0 ùñ p̃ is normal to S.

Furthermore, if S is a closed surface & p̃ is normal to S & @~U pointing outwards from S, p̃p~Uq ą 0 ùñ p̃

is an outward normal one-form.

3.5 Metric as a mapping of vectors into one-forms

Normal vectors and unit normal one-forms

~V is normal to a surface if Ṽ is normal to the surface. They are said to be unit normal if their magnitude

is ˘1, so ~V 2 “ Ṽ 2 “ ˘1.

• A time-like unit normal has magnitude ´1

• A space-like unit normal has magnitude `1

• A null normal cannot be a unit normal, because ~V 2 “ Ṽ 2 “ 0

3.10 Exercises

3

1



2 CHAPTER 3. TENSOR ANALYSIS IN SPECIAL RELATIVITY

(a)

p̃pAα~eαq “ Aαp̃p~eαq “ p̃pA0~e0 `A
1~e1 `A

2~e2 `A
3~e3q

“ A0p̃p~e0q `A
1p̃p~e1 `A

2p̃p~e2q `A
3p̃p~e3 “ Aαp̃p~eαq “ Aαpα P R

(b)

p̃Ñ
O
p´1, 1, 2, 0q

~AÑ
O
p2, 1, 0,´1q

~B Ñ
O
p0, 2, 0, 0q

p̃p ~Aq “ ´2` 1` 0` 0 “ ´1

p̃p ~Bq “ 0` 2` 0` 0 “ 2

p̃p ~A´ 3 ~Bq “ p̃p ~Aq ´ 3p̃p ~Bq “ ´1´ 3 ¨ 2 “ ´7

4 Given the following vectors

~AÑ
O
p2, 1, 1, 0q ~B Ñ

O
p1, 2, 0, 0q

~C Ñ
O
p0, 0, 1, 1q ~D Ñ

O
p´3, 2, 0, 0q

(Note that all parts were done with the assistance of numpy.)

(a) Show that they are linearly independent.

We do this by constructing a matrix, X, whose columns correspond to the four vectors. If the determinant

of X is non-zero, then that means the vectors are linearly independent.

detpXq “ det

¨

˚

˚

˚

˚

˚

˚

˝

2 1 0 ´3

1 2 0 2

1 0 1 0

0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‚

“ ´8

(b) Find the components of p̃ if

p̃p ~Aq “ 1, p̃p ~Bq “ ´1, p̃p~Cq “ ´1, p̃p ~Dq “ 0

We do this by observing that p̃ “ Aαpα, and so we have a system of four equations, which we can write in
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matrix form as
¨

˚

˚

˚

˚

˚

˚

˝

~A

~B

~C

~D

˛

‹

‹

‹

‹

‹

‹

‚

p̃ “

¨

˚

˚

˚

˚

˚

˚

˝

1

´1

´1

0

˛

‹

‹

‹

‹

‹

‹

‚

ùñ p̃ “

¨

˚

˚

˚

˚

˚

˚

˝

~A

~B

~C

~D

˛

‹

‹

‹

‹

‹

‹

‚

´1¨

˚

˚

˚

˚

˚

˚

˝

1

´1

´1

0

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

´ 1
4

´ 3
8

` 15
8

´ 23
8

˛

‹

‹

‹

‹

‹

‹

‚

.

(c) Find p̃p ~Eq, where ~E ÑO p1, 1, 0, 0q.

p̃p ~Eq “ pαE
α “ ´

5

8

(d) Determine whether p̃, q̃, r̃, and s̃ are linearly independent.

We do this by first setting up a system of equations for each of q̃, r̃, and s̃, as was done for p̃, and solving. I

will refer to the matrix whose rows were ~A, ~B, ~C, and ~D as X.

Xq̃ “

¨

˚

˚

˚

˚

˚

˚

˝

`0

`0

`1

´1

˛

‹

‹

‹

‹

‹

‹

‚

Xr̃ “

¨

˚

˚

˚

˚

˚

˚

˝

`2

`0

`0

`0

˛

‹

‹

‹

‹

‹

‹

‚

Xs̃ “

¨

˚

˚

˚

˚

˚

˚

˝

´1

´1

`0

`0

˛

‹

‹

‹

‹

‹

‹

‚

q̃ “

¨

˚

˚

˚

˚

˚

˚

˝

` 1
4

´ 1
8

´ 3
8

` 11
8

˛

‹

‹

‹

‹

‹

‹

‚

r̃ “

¨

˚

˚

˚

˚

˚

˚

˝

`0

`0

`2

`2

˛

‹

‹

‹

‹

‹

‹

‚

s̃ “

¨

˚

˚

˚

˚

˚

˚

˝

´ 1
4

´ 3
8

´ 1
8

` 1
8

˛

‹

‹

‹

‹

‹

‹

‚

Now if the matrix whose columns are comprised of p̃, q̃, r̃, and s̃ has a non-zero determinant, then the four

covectors must be linearly independent.

det
´

p̃ q̃ r̃ s̃
¯

“
1

4
,

and so they are indeed linearly independent.

6



4 CHAPTER 3. TENSOR ANALYSIS IN SPECIAL RELATIVITY

(a) Show that p̃ ‰ p̃p~eαqλ̃
α for arbitrary p̃.

Let us choose p̃ÑO p0, 1, e, πq, as a counter-example.

pαλ̃
α Ñ

O
0 ¨ p1, 1, 0, 0q ` 1 ¨ p1,´1, 0, 0q ` e ¨ p0, 0, 1,´1q ` π ¨ p0, 0, 1, 1q

Ñ
O
p1,´1, e` π, 0q��ÑO

p̃

(b) p̃ÑO p1, 1, 1, 1q. Find lα such that

p̃ “ lαλ̃
α

We may do this with a simple matrix inversion. We define Λ to be the matrix whose rows are formed by λ̃α.

Λl “ p ùñ l “ Λ´1p “

¨

˚

˚

˚

˚

˚

˚

˝

1

0

1

0

˛

‹

‹

‹

‹

‹

‹

‚

8 Draw the basis one-forms d̃t and d̃x of frame O.

They are

d̃tÑ
O
p1, 0, 0, 0q,

d̃xÑ
O
p0, 1, 0, 0q,

and they are shown in Figure 3.1.

9 At the points P and Q, estimate the components of the gradient d̃T .

Recall that d̃T ÑO

´

BT
Bx ,

BT
By

¯

, and so ∆T “ d̃Tαx
α “ d̃Tx∆x` d̃Ty∆y.

Now if we move only in the x direction from one of the points, we move some distance ∆x, change our

temperature by ∆t, and ∆y “ 0. Likewise for a movement in the y direction. Thus we can say

∆T “ d̃Tx∆x ∆T “ d̃Ty∆y

d̃Tx “
∆T

∆x
d̃Ty “

∆T

∆y

In Figure 3.2, from P I move a distance ∆x “ 0.5, which causes a temperature change of ∆T “ ´7, giving

d̃Tx “ ´14. Then I move a distance ∆y “ 0.5 and get the same temperature change of ∆T “ ´7, and so I

conclude that at point P, d̃T ÑO p´14,´14q.

At Q, we are in a flat region where T “ 0. If we move any non-zero distance ∆x or ∆y, so long as it does

not cross the T “ 0 isotherm, we have a ∆T “ 0, and thus d̃TpÑO p0, 0q.

13 Prove that d̃f is normal to surfaces of constant f .

If we move some small distance ∆xα “ ε, then there will be no change in the value of f , and thus we can

say Bf{Bxα “ 0, so

d̃f “
Bf

Bxα
d̃xα “ 0d̃xα “ 0.
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Figure 3.1: Problem 8: Basis one-forms of O. d̃t is given in blue and d̃x in red.

Since d̃f is defined to be normal to a surface if it is zero on every tangent vector, we have shown that d̃f is

normal to any surface of constant f .

14

p̃Ñ
O
p1, 1, 0, 0q q̃ Ñ

O
p´1, 0, 1, 0q

Prove by giving two vectors ~A and ~B as arguments that p̃b q̃ ‰ q̃ b p̃. Then find the components of p̃b q̃.

pp̃b q̃qp ~A, ~Bq “ p̃p ~Aqq̃p ~Bq “ AαpαB
βqβ “ pA

0 `A1qp´B0 `B2q,

“ ´A0B0 `A0B2 ´A1B0 `A1B2

pq̃ b p̃qp ~A, ~Bq “ q̃p ~Aqp̃p ~Bq “ AαqαB
βpβ “ p´A

0 `A2qpB0 `B1q

“ ´A0B0 ´A0B1 `A2B0 `A2B1,

And so we see that b is not commutative.

The components of the outer product of two tensors are given by the products of the components of the
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Figure 3.2: Problem 9: Isotherms.

individual tensors. Thus we can write the components as a 4ˆ 4 matrix.

pp̃b q̃qαβ “ pαqβ “

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 1 0

´1 0 1 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

18

(a) Find the one-forms mapped by g from

~AÑ
O
p1, 0,´1, 0q, ~B Ñ

O
p0, 1, 1, 0q,

~C Ñ
O
p´1, 0,´1, 0q, ~D Ñ

O
p0, 0, 1, 1q.

In general,

~V Ñ
O
pV 0, V 1, V 2, V 3q ùñ Ṽ “ g~V Ñ

O
p´V 0, V 1, V 2, V 3q,

and so

ÃÑ
O
p´1, 0,´1, 0q, B̃ Ñ

O
p0, 1, 1, 0q,

C̃ Ñ
O
p1, 0,´1, 0q, D̃ Ñ

O
p0, 0, 1, 1q.
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(b) Find the vectors mapped by g from

p̃Ñ
O
p3, 0,´1,´1q, q̃ Ñ

O
p1,´1, 1, 1q,

r̃ Ñ
O
p0,´5,´1, 0q, s̃Ñ

O
p´2, 1, 0, 0q.

By using the inverse tensor in reverse, we have the same effect as before, of negating the first component

~pÑ
O
p´3, 0,´1,´1q, ~q Ñ

O
p´1,´1, 1, 1q,

~r Ñ
O
p0,´5,´1, 0q, ~sÑ

O
p2, 1, 0, 0q.

20

In Euclidean 3-space, vectors and covectors are usually treated as the same, because they transform the

same. We will now prove this.

(a) Show that Aᾱ “ ΛᾱβA
β and Pβ̄ “ Λα

β̄
Pα are the same transformations if tΛα

β̄
u is equal to the transpose

of its inverse.

We can write that last statement as

Λαβ̄ “ ppΛ
α
β̄q
´1qT

and we know that

pΛαβ̄q
´1 “ Λβ̄α,

and also we know that the Lorentz transformation is symmetric, and so

pΛβ̄αq
T “ Λβ̄α,

which leads us to conclude that Λα
β̄
“ Λβ̄α, meaning the two transformations are the same.

(b) The metric has components tδiju. Prove that transformations between Cartesian coordinate systems

must satisfy

δīj̄ “ ΛkīΛ
l
j̄δkl,

and that this implies that Λk
ī

is an orthogonal matrix.

δīj̄ “ gp~eī, ~ej̄q “ gpΛkī~ek,Λ
l
j̄~ejq “ ΛkīΛ

l
j̄gp~ek, ~ejq “ ΛkīΛ

l
j̄δkl

Now show it is orthogonal

21

(a) A region of the t–x plane is bounded by lines t “ 0, t “ 1, x “ 0, and x “ 1. Within the plane, find the

unit outward normal 1-forms and their vectors for each boundary line.

I define unit outward normals as follows:

Let S be a closed surface. If, for each ~V tangent to S, we have p̃p~V q “ 0, then p̃ is normal to S.

In addition, if, for each ~U which points outwards from the surface, we have p̃p~Uq ą 0, then p̃ is an outward
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normal.

Furthermore, if p̃2 “ ˘1, then it is a unit outward normal.

For the problem at hand, I define the region inside the four lines to be Inside, and the region outside to be

Outside. For each of the four lines, I draw a vector ~V tangent (parallel) to the line, and ~U pointing outwards

(See Figure 3.3).

It helps to look at t “ 0 and t “ 1 together, and likewise for x, so I will start with t. We start with an

arbitrary p̃ÑO pp0, p1q, and ~V ÑO p0, V
1q, where V 1 ‰ 0.

p̃p~V q “ p0 ¨ 0` p1V
1 “ 0 ùñ p1 “ 0,

so p̃ÑO pp0, 0q is a normal 1-form to both lines. Now we find the corresponding unit normal, by taking

p̃2 “ ˘1 “ ´pp0q
2 ùñ p̃2 “ ´1 & p0 “ ˘1.

Whether we choose p0 to be positive or negative now depends on the line we are looking at, and which

direction is outward. For t “ 0, we have a vector ~U “ p´U0, U1q, where U0 ą 0.

p̃p~Uq “ p0p´U
0q ` 0 ¨ U1 ą 0 ùñ ´p0U

0 ą 0 ùñ p0 ă 0,

so for t “ 0 we have p̃ÑO p´1, 0q, and likewise for t “ 1 we have p̃ÑO p1, 0q. To get the associated vectors,

we apply the metric ηαβ , giving us ~pÑO p1, 0q for t “ 0 and ~pÑO p´1, 0q for t “ 1.

For x “ 0 and x “ 1, we instead have ~V ÑO pV
0, 0q, and following the same steps as before, we conclude

that: for x “ 0, p̃ÑO p0,´1q, ~pÑO p0,´1q, and for x “ 1, p̃ÑO p0, 1q, ~pÑO p0, 1q.

Figure 3.3: Problem 21.a

(b) Let another region be bounded by the set of points tp1, 0q, p1, 1q, p2, 1qu. Find an outward normal for the

null boundary and the associated vector.

23

(a) Prove that the set of all
`

M
N

˘

tensors forms a vector space, V .

Let T be the set of all
`

M
N

˘

tensors, s,p,q P T , ~A P Rn, and α P R. For T to be a vector space, we must

define the operations of addition, and scalar multiplication (amongst others).

Addition:

s “ p` q ùñ sp ~Aq “ pp ~Aq ` qp ~Aq

Scalar Multiplication:

r “ αp ùñ rp ~Aq “ αpp ~Aq

(b)

Prove that a basis for T is

t~eα b . . .b ~eγ b ω̃
µ b . . .b ω̃λu
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Still working on it

24 Given:

Mαβ Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 ´1 0 2

2 0 0 1

1 0 ´2 0

˛

‹

‹

‹

‹

‹

‹

‚

(a) Find:

(i)

M pαβq Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 1
2

1 ´1 0 1

1 0 0 ´ 1
2

1
2 1 ´ 1

2 0

˛

‹

‹

‹

‹

‹

‹

‚

; M rαβs Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 0 ´1 ´ 1
2

0 0 0 1

1 0 0 3
2

1
2 ´1 ´ 3

2 0

˛

‹

‹

‹

‹

‹

‹

‚

(ii)

Mα
β “ ηβµM

αµ Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 ´1 0 0

1 ´1 0 2

2 0 0 1

1 0 ´2 0

˛

‹

‹

‹

‹

‹

‹

‚

(iii)

M β
α “ ηαµM

µβ Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 ´1 0 0

1 ´1 0 2

2 0 0 1

1 0 ´2 0

˛

‹

‹

‹

‹

‹

‹

‚

(iv)

Mαβ “ ηβµM
µ

α Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 ´1 0 2

2 0 0 1

1 0 ´2 0

˛

‹

‹

‹

‹

‹

‹

‚

(b) Does it make sense to separate the
`

1
1

˘

tensor with components Mα
β into symmetric and antisymmetric

parts?

No, it would not make sense. For one, the notation for (anti)symmetric tensors do not even allow one to

write it sensibly (M
pα
βq ). More importantly, one argument refers to vectors, and the other to covectors, so

it does not make sense to switch them.

(c)
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ηαβ “ ηαµηβµ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

“ δαβ

31

Still working on it

(33)

34 Define double-null coordinates u “ t´ x, v “ t` x in Minkowski space.

(a) Let ~eu be the vector connecting the pu, v, y, tq coordinates p0, 0, 0, 0q and p1, 0, 0, 0q, and let ~ev be the

vector connecting p0, 0, 0, 0q and p0, 1, 0, 0q. Find ~eu and ~ev in terms of ~et and ~ex, and plot the basis vectors

in a spacetime diagram of the t–x plane.

u “ t´ x “ 0 ùñ t “ `x v “ t` x “ 0 ùñ t “ ´x

u “ t´ x “ 1 ùñ t “ 1` x v “ t` x “ 1 ùñ t “ 1´ x

We draw the vectors ~eu and ~ev in Figure 3.4, such that they point from the appropriate points of intersection

on these lines of constant u and v. From this it is obvious that ~ev ` ~eu “ ~et, and that ~ev ´ ~eu “ ~ex, or

likewise ~ev “ ~et ´ ~eu and ~eu “ ~ev ´ ~ex. This is a system of 2 equations with two unknowns.

~ev “ ~et ´ ~ev ` ~ex ùñ ~ev “
1

2
p~et ` ~exq,

~eu “
1

2
p~et ` ~exq ´ ~ex ùñ ~eu “

1

2
p~et ´ ~exq.

(b) Show that ~eα, α P tu, v, y, zu form a basis for vectors in Minkowski space.

~A “ Aα~eα “ Au~eu `A
v~ev `A

y~ey `A
z~ez

“
Au

2
p~et ´ ~exq `

Av

2
p~et ` ~exq `A

y~ey `A
z~ez

“
1

2
pAv `Auq~et `

1

2
pAv ´Auq~ex `A

y~ey `A
z~ez

If we let At “ 1
2 pA

v `Auq and Ax “ 1
2 pA

v ´Auq, then

~A “ Aα~eα “ At~et `A
x~ex `A

y~ey `A
z~ez

(c) Find the components of the metric tensor, g in this new basis.
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To make this concise, we will begin with some definitions. Let w P tu, vu, and q P ty, zu. We also define

λpwq ”

$

’

&

’

%

´1, if w “ u,

`1, if w “ v.

It follows that

~ew “
1

2
p~et ` λ~exq.

Now we can show that

gww “ ~ew ¨ ~ew “
1

2
p~et ` λ~exq ¨

1

2
p~et ` λ~exq

“
1

4
r~et ¨ ~et ` 2λp~et ¨ ~exq ` λ

2p~ex ¨ ~exqs

“
1

4
p´1` 2λ ¨ 0` 1 ¨ 1q “ 0,

so guu “ gvv “ 0.

For the u and v cross terms, we have

guv “ gvu “ ~eu ¨ ~ev “
1

2
p~et ´ ~exq ¨

1

2
p~et ` ~exq

“
1

4
r~et ¨ ~et ` 0 ¨ ~et ¨ ~ex ´ ~ex ¨ ~exs

“
1

4
p´1` 0´ 1q “ ´

1

2

For the w with y and z cross terms we have

gwq “ ~ew ¨ ~eq “
1

2
p~et ` λ~exq ¨ ~eq

“
1

2
r~et ¨ ~et ` λ~ex ¨ ~exs

“ 0

so guy “ gvy “ guz “ gvz “ 0. We also already know gyy “ gzz “ 1, and gyz “ gzy “ 0, so we can write the

components of the metric tensor in this new coordinate system as

gαβ “

¨

˚

˚

˚

˚

˚

˚

˝

0 ´ 1
2 0 0

´ 1
2 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

(d) Show that ~eu and ~ev are null, but not orthogonal.

~eu ¨ ~eu “ guu “ 0 ùñ ~eu is null

~ev ¨ ~ev “ gvv “ 0 ùñ ~ev is null
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~eu ¨ ~ev “ guv “ ´
1

2
‰ 0 ùñ ~eu and ~ev are not orthogonal.

(e) Compute the four one-forms d̃u, d̃v, gp~eu, q, and gp~ev, q in terms of d̃t and d̃x.

d̃φÑO

ˆ

Bφ

Bt
,
Bφ

Bx
,
Bφ

By
,
Bφ

Bz

˙

,

so

d̃tÑO p1, 0, 0, 0q, d̃xÑO p0, 1, 0, 0q,

d̃uÑO
1

2
p1,´1, 0, 0q, d̃uÑO

1

2
p1, 1, 0, 0q,

from which it is obvious that

d̃u “
1

2
pd̃t´ d̃xq, d̃v “

1

2
pd̃t` d̃xq.
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Figure 3.4: Problem 34a: Spacetime diagram of double-null coordinate basis vectors in t–x plane.


