Chapter 6

Curved Manifolds

6.9 Exercises

1 Determine if the following sets are manifolds, and why. List any exceptional points.

(a) Phase space in Hamiltonian mechanics is generally smooth, though it may contain singular points,
depending on the system described. So it is a manifold, excluding the singularities.

(b) The interior of a circle in 2D Euclidean space is smooth everywhere, and is therefore a manifold.

(c) The set of permutations of n objects is not a manifold, as it is discontinuous.

(d) The set of solutions to xy(z? + y? — 1) is a manifold. The solutions form a unit circle, (22 + y? = 1),
as well as lines which span the a- and y-axes (z = 0, y = 0). The singular values occur at the points of
intersection: (0,0), (0, £1), and (£1,0).

2 On which of the manifolds in Exercise 1 is it customary to use a metric? What are those metrics? Why
would metrics not be defined for some?

(a) Phase space is comprised of two variables, p and ¢, each of which represent different physical quantities,
with incompatible units. For instance, if p is momentum and g is position, then p? + ¢? is non-physical.

(b) The metric for the interior of a circle in 2D Euclidean space would be the Euclidean norm in 2 dimensions.
While this could be given by (As)? = (Az)? + (Ay)?, it would be more natural to express in units of r and
0.

(As)? = (Az)? + (Ay)?
= (z — x0)* + (y — %)
=72 [(COSQ —cosfp)? + (sin@ — sin 00)2]
= r? [cos2 0 + cos? By — 2 cos 0 cos Oy + sin® 0 + sin” Hy — 2sin O sin 90]
=7?[1+1—2cos(f — )] = 2r*[1 — cos(A0)]

= 472 gin? (A6/2)
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(¢) This was not a manifold.

(d) Since this is again 2D Euclidean space, we could use the Euclidean norm in 2 dimensions. This time it
would be more natural to express distances in (z,y) coordinates, unless we restricted ourselves to the unit
circle portion of this manifold.

4 Prove the following:

(a) The number of independent terms in d2x® / oz ozt |p is 40.

The total number of components is 4%, however, we do not want to consider duplicate terms. To find the
number of duplicate terms in total, we find the number of duplicate terms for a fixed value of «, and then
multiply that by 4. The number of terms for a fixed o is 42, and of those, 4 are completely independent
(the diagonals), and the remainder exist in pairs. Since we only want one from each pair, we divide the total
count by two, which means that the total number of duplicate components is 4[(42 —4)/ 2], and so the total
number of non-duplicate components is 43 — 4[ (4% — 4) /2] = 40.

In the next part, I cheat and use a formula. I will apply it to this part first, to show that it works. If you

have a symmetric rank k£ tensor with n dimensions, then it has

)t

independent components. In the case of this problem, by fixing «, we get 4 rank 2 tensors of 4 dimensions,

and so the total number of independent components is

1
4(4+§ )-—4&

(b) The number for (9230@/63:)‘/696“/ 2" |p is 80.

Here, if we fix o, we have 4 symmetric rank 3 tensors of 4 dimensions, and so there are

4+3-1
4 =80
(757

independent components.
(c) The number for gog /. |p is 100.

If we interchange af, but fix 7'/, then we have a symmetric rank 2 tensor of 4 dimensions, which has

4+2-1
=10
()

independent components. Likewise, if we interchange +'i/ but fix a3, we get 10 independent components.
Multiply the two and we have 100 independent components.
7

(a) Define det(A) in terms of cofactors of elements.

det(A) = Z(—l)iJrja,i’jMLj = Z(—l)i+jai7jMi,j

j=1 =1
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(b) Compute <= det(A), where A is a 2 x 2 matrix. Show that this satisfies Equation 6.39.

First we note that, for A;x1, det(A) = a1,1. Thus, for Aoxe, M; ; = ay j-, where ¢ # ¢’ and j # j'. Therefore

)

we can rewrite the determinant of Asy o as

2
det(A4) = Z(—1)i+fai7jai,,j,
=1

~

= (=1 ayjaz + (-1)az ary.
If we assume j = 1 (it doesn’t really matter if we choose 1 or 2), then this simplifies to

det(A4) = (=1)%a1,1a22 + (—1)%az1a1 2
=ai,102,2 — G2,101 2.

We can then see that the derivative is

0
oxH

det(A) = w(auam — a21a12)

= 11022, T 22011, — A21012,; — 012021,

Now to relate this to Equation 6.39, we let A be the metric g. Then the derivative of its determinant is

9.p = 911922, + 922911, — 921912, — 912921,

= 11922, + 922911, — 2912912,

Now if we expand Equation 6.39, we see we have

9 = 911922 — 12921 = 11922 — (912)2
990 = 9" 0110 + 972922, + 29" 12,4
ggaﬁgaﬁ,u = (911922 — (912)2)(911911# + 922922,# + 2912912,#)
= 022011, — 911(912)2911# + 911922, — 922(912)2922,;1, + 2911922912912,y — 29129124

= g11922, + 922911, — 29120912, + 2911922912912% - (912)2(911911,u + gzzgzz,u)-

If it is the case that 2g119229"2912,,, — (912)%(9* 911, + 9?2 922,,,) = 0, then this is consistent with our previous
expression for g ,, but I'm not sure how to show that.

10 A “straight line” on a sphere forms a great circle. The sum of the interior angles of a triangle whose
sides are formed by arcs of great circles is greater than 180°. Show that the rotation of a vector, parallel
transported around such a triangle (Figure 6.3 in Schutz), is exactly equal to the excess of that 180° sum.

11 What guarantees we can find a vector field 1% satisfying:
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(a) The integrability condition follows from the commuting of partial derivatives, [61,, 6’5]1/0‘ = 0. Show
that this implies

(Fapﬂ,l/ - Fauu,ﬂ)v“ = (FQ;L,BFHUV - Fa;;urugﬁ)va =0

Since we must satisfy V<4 +I',gV*# = 0, then it must be the case that V5 = —TI'* V. Differentiating

both sides, we get

Vo = 1%, VI =15V,

=T 5, VI 4T, TV
Ve, = -T%,, ,VF + 1%, " v
Vi =Vius

> _FCVMB,VVH + FCEMBFHO.VVU = —FQ#V,BVM + Fauurﬂaﬁva

(Fa,u,ﬁ,v - Fap,u,ﬁ)vu = (Pa,uﬁl_wau - FQMVFMUB)VU

(b) By relabeling indices, we can work this into another form:

(Fapﬂ,u - Fauuﬁ)vﬂ = (FQUBFU;MJ - Faayrguﬁ)vlu

T =T #1907 = T 507, )V =0

13
(a) Show that if A and B are parallel transported along a curve, their dot product is constant along that
curve.

The dot product being constant along the curve means that it must be parallel transported along the

curve, i.e. Vg(/f B) = 0. We will now show this.
V(A B) = UMV \(gapA*B?)
= U/\(AO‘BBMJF gaBBBV)\Aa + ga/_;A“VABﬁ)
= BPUMV,A® + AUV ,\B.

Notice that the terms UV A® and UMV, B” are just the parallel transport equations, and so they

come out to be zero, meaning Vﬁ(/_f é) = 0, i.e. the dot product is constant along the curve.

(b) Show that if a geodesic is spacelike, timelike, or null somewhere, then it remains that way everywhere.

Since the dot product of two parallel transported vectors is constant, if we parallel transport a curve’s
tangent vector along itself (the geodesic), its magnitude (U - U) should remain constant. Since its

magnitude doesn’t change, it will remain spacelike, timelike, or null.

14 Show that if the curve in Equation 6.8 is a geodesic, the proper length is an affine parameter.
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é—f WdA

If the curve is a geodesic, we have just shown that the dot product of any two vectors remains constant along

Equation 6.8 states

the curve, and so we may pull it out of the integral.

\/7] d/\—W(Al—AO),

and so the proper length ¢ is indeed an affine parameter, as it can be obtained by a linear transformation of

the parameter of the curve, .
16
(a) Derive Equations 6.59 and 6.60 from 6.68.

Somehow Schutz uses a Taylor expansion to get 6.59 from 6.68. I honestly have no idea how he does
this, and Taylor expanding vectors and Christoffel symbols is black magic to me, so here’s my (obviously

wrong) attempt.

SV = J I,V da® — f I, V* da?
zl=aqa rzl=a+da

+ f re,,veds' — f e, v*da!
r2=b z2=b+5b

dz?
a

da?
a

b

)
- _(re 1v~) da!
)

dzt
b

but then a miracle occurred!!

N _LbJréb 581 (F‘“MQV“> da2

+ rw 5o (re,,v*) st

2
a ox

The next step actually does make sense to me. Since we are integrating over such tiny areas (da and

b)), Sa+6a f(z)dz ~ da f(a), so

Lb+éb sa Fre (FO‘HQV“) dz? ~ §a b aL; (FaugV“)7

L " a% (1, V") da' ~ sasb a% (T V).
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Subtracting the two gives us
5V ~ da db [—M(F ;L2VM) + @(F #1V'u'>:|.

(b) Derive Equation 6.61 from this.

Using a generalized form of Equation 6.53:

Ve = —T%5V"

we arrive at the expression
(F“V/\V”)’ﬁ =T, VYV + T\ Vg =T, V7 =TI, 5V".
Now we substitute u — v in Equation 6.60, and use this expression to find
BV~ 8adb [ —T% V7 + T oL, V7 4T, VY = T2, T,V |

X 5@ 5b I:Faul)z - ]_—\Oél/271 + FayQ]-—‘Vlu‘l - Faul]'—‘yﬂQ:IVV'

18

(a) Derive Equations 6.69 and 6.70 from 6.68.

1
Raﬂ/_w = i(gau,ﬁy — Yau,Bv + 9Bu,ov — gﬁu,au)
1
Rﬁauu = i(gﬁu,a,u — 98u,av t Jap.pr — gau.ﬁu)
1
= 5(_gau,f3p, + Gapu,pr — 9Bu,av + gﬂu,au)
= 7Raﬁ;w
1
Raﬂu,u = §(f/z\/p 30— Jaw,Bu T 9Bv.ap — gﬁu,au)
1
= 5(_.9(11/,5;1, + Yo, Br — 9Bu,av + gﬁu.au)
= _Raﬂuv
1
R,uuaﬁ = i(guﬁ,ua — Jpa,vB + Gua,us — guB,/mz)
1
= i(gul/,ﬂy = Jop.pr +* 9Bu,ov — gﬂy,au)
= Raﬂw

2(Ra6uu + Ravﬁu + Rauyﬂ) = YGav,fp — Jau.pr + 9Bu,av — 9pr,an
+ Gap,vp — Gap,vu + 9vB,ap — Jru,aB

+ 9aB. v — Gav,uB + Guv,aB — GuB,av
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=0

(b) Show that Equation 6.69 reduces the number of independent components from 4 x 4 x 4 x 4 to 6 x 7/2.

For a rank-2 symmetric tensor, you have (n/2)(n + 1) independent components. For an anti-symmetric
tensor you have (n/2)(n — 1) independent components. So for each of our pairs of anti-symmetric
indices, there are (n/2)(n—1) independent components. We can then treat the two pairs as a single pair

of symmetric indices, with that many possible values. The number of indices is therefore:
(1/2)[(n/2)(n = D][(n/2)(n — 1) + 1] = (1/2)[(4/2)(4 = D][(4/2)(4 = 1) + 1] = 6 x 7/2 = 21.

(c) Show that Equation 6.70 only imposes one additional relation, separate from Equation 6.69, reducing

the total independent components to 20.

The addition of Equation 6.70 adds the condition that R,[,,] = 0, and so the number of independent

() -(7)-()-=

19 Prove that the components of the Riemann tensor are all zero for polar coordinates in the Euclidean

components becomes

plane. Recall that:

[y =1/r; TTgg=—r

Raﬁ;w = Faﬁw# - Faﬁu,v + Fadﬂrgﬁv - Fawraﬁu'
According to the computer algebra system, Maxima, the components are all zero.

(%1i1) load(ctensor)$
(%i2) ct_coordsys(polar)$

(%13) cmetric()$

(%i4) 1g;
(1 0 ]
(%o4) [ ]
[ 21
[0 r ]

(%i5) riemann(mcs);
This spacetime is flat

(%05) done



24 Using Equation 6.88, derive Equation 6.89.

Raﬁ/u/,)\ =
Ra,@)\u,u =

Ra,@l//\,p, =

2(Raﬂ/_w,)\ + Raﬁ)\,u,l/ + ROLBU)\“LL)

25
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1
5 Gavgux = Gappva + ppavs = Gov.apn)
1
5(9&/1,5)\” — JaX,Buv + 98\, apr — g,B}L,Oé)\V)
1

5(.9(1)\7[311“ — Jav,BAp + 9Bv,a u — gB/\,ou/p,)

= GJav,fur — +9 JTN77 N

= Gax,Buv T 98N, apv — 9Baiw

+ Gar,Bvp — Jav,fAu + — 9B\, avp
=0

(a) Prove the Ricci tensor is the only independent contraction of the Riemann tensor. All others are +R%;

or 0.

There are three possible ways to contract the Riemann tensor. If we contract on the second lower index,

we have the definition of the Ricci tensor: Rg, = Ro‘ﬁw.

The value of contracting the last index is the easiest to find, and can be found by manipulating the

above expression and invoking the anti-symmetry properties of the Riemann tensor:

Rﬂl’ = Raﬁau

= 7Ra5u(x = Raﬁva = 7Rﬁl/'

Given this identity, finding the value of the remaining contraction is easy. Equation 6.70 states that

Ra,@;w + Rauﬂu + Ram/ﬂ = 0.

If we raise the a’s with the metric, we get

gaﬁ (Rapuw + Ravpp + Rapwp) =0

Rr?

Rr°

(b) Show that the Ricci tensor is symmetric.

Buv

Buv

3 s _
+R 5 + R, =0

8 s _
+R,, —R’ 5 =0

B —
R, =0

Rﬁ” = Raﬁau

ga)\RBV = R)\ﬁoa/ = Ral//\B
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gaAga/\RBV = gaARaV)\ﬁ = RAVW =Rup

- RBV = Rl,ﬁ

28

(a) Derive Equation 6.19 using the coordinate transformation (z,y,z) — (r,0, @)

We begin by finding the basis vectors in (r, 6, ¢), using
e dy. o

€r = €y + €y + —¢€
" Thor Y or ¥

or
or_, Oy_ Oz

€y = %em + %ey + %ezv
e U, O
T
The variables transform according to
x = rsinf cos ¢,
y = rsin@sin ¢,
z =rcosf.
Now we take the derivatives
0 0 0
a—f:sinﬂcos¢, a—z:rcosecosqﬁ, a—;:—rsinesinqb,
0 0 0
a—?:=sin951n¢, a—Z;:rcosHsinqS, a—i=—rsin9cos¢,
0 0 0
a—i=cos€, a—;=—rsin9, £=0.

The basis vectors are therefore

€, = sin 6 cos ¢€; + sinfsin ¢é, + cos O¢e,
€p = 1 cos § cos ¢y, + r cos O sin pé,, — rsin be,

€y = —rsinfsin ¢e; + rsin 0 cos Pe,

Now we find the components of the metric tensor using the fact that g,z = €, - €3.

I

- € = (sinf cos ¢)?6,, + (sinOsin ¢)?6,, + (cos® 0)20,, + ...

)

Grr =
= sin” f cos® ¢ + sin” fsin” ¢ + cos? 6 = sin® 6 + cos? 0
= 1’

Goo = €p - €9 = (1 cosfcos ¢)*5,, + (rcosfsin )5, + (—rsind)?d,.

= 72(cos? f cos® ¢ + cos? sin? ¢ + sin? §)
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= r%(cos?  + sin* §)

= 7‘2’

Gop = €y €y = (—7sinbsin)?5,, + (rsinf cos §)?dy,

= r2(sin? @ sin? ¢ + sin? 6 cos? ¢)

= rZsin? 0.

Now for the off-diagonal elements, we take advantage of the symmetry properties of the metric to reduce

it from 6 terms to 3.

gro = Jor = 57' :

9ro = Gor = ér

90¢ = Jp0 = €p -

(sin @ cos @) (r cos 0 cos @), + (sin 0 sin ¢)(r cos 8 sin ¢)d,,, + (cos 0)(—rsinh)d, .,

€9

r (sin 6 cos 0 cos® ¢ + sin 6 cos 0 sin? ¢ — sin 6 cos 49)

=0,

- €y = (sin 6 cos ¢)(—rsin @ sin ¢)dy, + (sin @ sin @) (7 sin 6 cos ¢)dy, + (cos #)(0)0..

= r(—sin” #sin ¢ cos ¢ + sin? fsin ¢ cos P)
=0,

€p = (rcosfcosd)(—rsinfsin @)dz, + (1 cosfsin @) (rsin 6 cos ¢)dy,
= 1r%(— cos 6 cos ¢ sin § sin ¢ 4 cos @ cos ¢ sin O sin ¢)

=0.

The metric tensor in spherical polar coordinates is therefore

1 0 0
(gij): 0 r2 0

0 0 r2sin0

(b) Use Equation 6.19 to find the metric on the surface of a sphere.

On the surface of a sphere, r is fixed, and therefore Ar = 0. As a result of this, we do not need to

consider g, and the only relevant components become (6, ¢). So we can simplify the metric as:

=" "
9ij) = .
0 7r2sin%0

(c) Find the components of g®# on the surface of a sphere.

Since gog is a diagonal matrix, the components of its inverse are simply equal to their multiplicative
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inverse. So the matrix is
1/r? 0

(9i5) = :
0 1/r?sin@

29 Calculate the Riemann tensor of the unit sphere in spherical polar coordinates.

The metric for a unit sphere in spherical polars is

1 0
(glj) = 9 )
0 sin“6
and so one component of the Riemann tensor is
1 1
Rogop = 5 (900,60 = 900,60 + 960,06 = 990,00) = 5 (900,60 = 996.00)
S 2

Using the symmetry and anti-symmetry properties of the Riemann tensor, we find the remaining components:

R¢9¢9 = sin2 0

Rg¢¢9 = R¢99¢ = — Sin2 0.

All remaining components are zero, as they have indices 68060¢ or ¢¢¢pf, and the only non-zero second
derivative of the metric is g4¢,00, Which requires two of each index, not three.
30 Calculate the Riemann tensor on a cylinder.

The metric in cylindrical polars, (r, 0, z), is given by

1 0 O
(gi7) =10 +2 0]
0 0 1

On the surface of a cylinder (excluding the top and bottom) the radius is unchanging, so Ar =, as was the

case on the surface of a sphere. The metric can therefore be simplified in (6, z) coordinates as:

(Qz‘j) =

From the metric alone, it is obvious that the components of the Riemann tensor must all be zero. This is
because the Riemann tensor depends on second derivatives of the components of the metric, and the only
variable term is ggy = 7. Since we removed the dependence on the coordinate r, none of the terms in the

Riemann tensor will involve differentiating with respect to r, and therefore they will all be zero.
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32 A 4D manifold has coodinates (u,v,w,p), and a metric

01 00

1 0 0 O
(9ap) = .

0 010

0 0 0 1

(a) Show that the manifold is flat and has signature +2.

Since every element in the metric is a constant, gag ., = 0, and therefore Rng,, = 0, so the manifold is

flat.

The signature is just the sum of the diagonal elements, which in this case is 1 + 1 = 2.

(b) Since this manifold is flat and has signature +2, it must be a Minkowski spacetime. Find a coordinate

transformation to (¢, x,y, z).

Ag=n
Agg~t =ng™!
A =ng~' = ng (since g is symmetric)
-1 0 0 0)fo 1 0 0 0 -1 0 0
0 10 0]|[l1 00 0 1 0 0 0
(Aaﬂ)_ =
01 0lloo 10 0 0 10
0 00 1/J\0 0 0 1 0 0 0 1

33 A three-sphere (or glome) is the 4D analog of a sphere, with cartesian coordinates (z,y, z, w), described

by the equation 22 + y? + 22 + w? = r?, where r is its radius.
(a) Define coordinates (r, 8, ¢, x), given by

x = rsin x sin 6 cos ¢, y = rsin x sin @ sin ¢,

z = rsinycosb, w = TCcosY,

and show that (0, ¢, x) form the coordinates of the surface of the sphere.

Per usual, we begin by finding the elements of the Jacobian

A (z,y,2,w) = (r,0,0,X).
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Ox/0r = sin y sin f cos ¢, dy/dr = sin x sin @ sin ¢, 0z/dr = sin x cos b, Ow/0r = cos,
0x/00 = rsinxcosfcosp,  Oy/0f = rsinycosfsing, 0z/00 = —rsinysind, Jw/df =0,
0x/0p = —rsinxsinfsing, 0y/0p =rsinxsinfcosp, 0z/0¢ =0, ow/o¢ =0,

O0x/0x =rcosxsinfcosg, Oy/dx = rcosysinfsing, 0z/0x =rcosxcosh, Ow/dx = —rsiny.

the basis vectors are then

L Ox~

€¢ = 7660‘

€, = sinxsinfcos e, €y = rsinycosfcospe, €y = —rsinysinfsinge, €, = rcosxsinf cospe,
+ sin x sin 0 sin @€, + 7 sin x cos 6 sin ¢é), + rsin x sin 6 cos ¢é), + r cos x sin § sin g€},
+ sin x cos f¢e, — rsin x sin 0¢€, + rcos x cosf
+ oS X €y — rsin €y,

Notice that if we fix x = 7/2, this reduces to the basis vectors for 2D spherical polars.

The components of the metric can be found using g.s = €, - €3.

Grr = sin? y sin? 0 cos® g1, + sin? y sin? @ sin® PNy + sin® x cos® 0. + cos® XNuwuw
= sin? x(sin? @ + cos? ) + cos? x = sin® x + cos? y = 1
gog = 1° (Sim2 x cos? x cos? ¢, + sin® x cos? 0 sin® ¢m,,, + sin® y sin® 97722)

= 72 sin? y(cos? f + sin”® §) = 72 sin? x

oo = r? (Sim2 x sin? @ sin? ¢, + sin? x sin? 6 cos? (bnyy)
= r%sin” xsin? @

Iyx = r? ((3082 x sin? 6 cos? ¢, + cos? x sin? 6 sin? PNyy + cos? x cos? 01, + sin® xnww)

=r? (0052 x sin? 0 + cos? x cos? @ + sin? X) = r? (cos2 X + sin? X) = r?
To show that the off-diagonal terms are zero, I got lazy and used the Maxima computer algebra system.
Its naming convention and ordering for these coordinates is different, but it still makes it clear that the

metric is diagonal.

(%1i1) load(ctensor)$ /* load the component tensor package */
(%i2) ct_coordsys(spherical4dd)$ /* use the 3-sphere metric */
(%1i3) 1g; /* display the metric */

[1 0 0 0 ]
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(%03) [
[ 2 2
[0 0 r sin (theta) 0

[ 2 2 2

T T R N

[0 O 0 sin (eta) r sin (theta)

1 0 0 0

0 r2sin?y 0 0
(gij) =

0 0 r?sin? ysin?0 0

0 0 0 r?

(b) Show that the metric on the surface of the three-sphere only has non-zero components ggg, gse, and gy

On the surface of a three-sphere, r is unchanging, so Ar is always zero. Thus, we may reduce the

dimensionality of the metric to 3: (6, ¢, x).

r? sin? y 0 0
(9i5) = 0 r2sin? ysin?0 0
0 0 r?

34 Prove the following identities for a general metric tensor in a general coordinate system. Equations 6.39

and 6.40 will be helpful.

(a) T, = 3(Inlg]).,

= (ln 191).»

e WDy 1 (9w (0
N RN AN e T i

nv

(b) g T, = (—9°°\/=9).5/v/~9

9T, = —(9*°V=9) s/V=9
= (0" (V=9).5 + 9 sV =9)/V =9
= —(""(V=9) s/V=9+ 39" 5)
= —(g*T 5 + 9% )
%g“”gﬁ (9w + 9o — ) = —(9°° 9 9r0,8/2 + 9°° )

1
59" 9" Gu + 9ov.) = 8" 9" 9u5/2 = ~(6°7 9 9r0./2 + 9°7 )
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1
iguygﬁa(gﬁu,v + g[ﬂu,u) = 7gaﬁ,5
L@ ge + P gs) =~
2 v98u n9Br .8
1
B KB — af
_5(56119 a,y + 6[3 g a”u,) =9 B

1

o \_ _ aB
5207 5) =975

(c) F¥1, = (y=gFlm) /=g
F[MV];V = F[”V],V + F[MU]Faua = (F[NV],V V—g -+ FMV(V _9)711)/\/ 9= (\/ _gFW/),V

(d) 9% 9gopy = =9 908 We start with g*?g,p = (50‘5. Then we differentiate both sides to get

gaa,'yg(rﬁ + gaggaﬁ;y =0

9908~ = —9°7 908

(e) guy,a = _Fuﬁagﬁy - Fuﬁaguﬁ

g'uy;a = gl“/ + Fuﬁagﬁy + Fyﬂaguﬁ =0

e’

gV = _Fuﬁagﬁu — F”ﬁag“ﬁ

,Q
35 Compute the metric tensor, Christoffel symbols, and Riemann tensor for a spacetime with line element:
ds® = —e2® dt* + €2 dr? + r2(d6* + sin? 0 dg?).

Based on the line element, the metric must be

—e22 0 0 0 —e 2% 0 0 0
0 e2A 0 0 b 0 e~2A 0 0
(9ap) = (9™")
0 r2 0 0 0 1/7"2 0
0 0 0 7r2sin0 0 0 0  1/r?sin®0

For the rest of this problem, I took advantage of the Maxima computer algebra system. According to it, the

non-zero, unique Christoffel symbols are

, do do
T = exp(?@ — 2A)$ Ftrt = 5
dA 1
I, = — rl,=1r%, ==
rr ar o T r
Iy = —exp(—2A)r F¢0¢ = cot §
[",s = —exp(—2A)r sin? @ F9¢¢ = —sinfcosf



16 CHAPTER 6. CURVED MANIFOLDS

The independent non-zero components of the Riemann tensor are

d® /dA do d2o 1 d®
Rigro = eXP(2((I) - A)) ldr <d7“ - dr) — ﬁ Rigro = thbtgb = f; eXp(2(<I) — A))E
dAd®  d2®  [do\’ 1dA
Rire = E@ B W - (d’l‘) Rogrg = RT¢7"¢ = _;a
Rogpg = exp(—2A) — 1 Rypoo = exp(—2A) (exp(2A) — 1) sin® ¢
d® dL
Rggtt = —r GXP(—QA)E Rogrr = rexp(—ZA)g

36 Consider a 4D manifold with coordinates (¢, z,y, z) and line element
ds® = —(1 +2¢) dt* + (1 — 2¢)(dz® + dy® + d2?),

with |@(¢, z,y,2)| « 1. At an arbitrary point P with coordinates (tg, xo, Yo, 20), find a coordinate transfor-
mation to LIF. How does this frame accelerate with respect to the original coordinates? Do all of this to
first order in ¢.

By inspection of the line element, we can see that the metric has components

—(1 4 2¢) 0 0 0
0 (1-2¢) 0 0
(gaﬁ) -
(t2.3.2) 0 0 (1-—2¢) 0
0 0 0 (1—2¢)

We want a transformation to a Minkowski spacetime, i.e.
A A 5 garsr = Nap.

Now, there may be multiple transformations which satisfy this, so we need only find one. Since both g and

7 are diagonal, I assume that A is diagonal as well, and find its components.

TNoo = AO/OAO/()QO/O’ Nii = AiliAi/igi’i’
—1=(AY)%(—(1 +2¢)) 1= (A")%(1 —2¢)
AY) = (1+2¢)712 AT = (1 2¢)7V2

Since we know that ¢ is small, we can use the approximation (1 + 2)~'/? = (1 — 2/2) + O(2?), to find
N ) A~ (14 0)

(39)



