
Chapter 6

Curved Manifolds

6.9 Exercises

1 Determine if the following sets are manifolds, and why. List any exceptional points.

(a) Phase space in Hamiltonian mechanics is generally smooth, though it may contain singular points,

depending on the system described. So it is a manifold, excluding the singularities.

(b) The interior of a circle in 2D Euclidean space is smooth everywhere, and is therefore a manifold.

(c) The set of permutations of n objects is not a manifold, as it is discontinuous.

(d) The set of solutions to xypx2 ` y2 ´ 1q is a manifold. The solutions form a unit circle, (x2 ` y2 “ 1),

as well as lines which span the x- and y-axes (x “ 0, y “ 0). The singular values occur at the points of

intersection: p0, 0q, p0,˘1q, and p˘1, 0q.

2 On which of the manifolds in Exercise 1 is it customary to use a metric? What are those metrics? Why

would metrics not be defined for some?

(a) Phase space is comprised of two variables, p and q, each of which represent different physical quantities,

with incompatible units. For instance, if p is momentum and q is position, then p2 ` q2 is non-physical.

(b) The metric for the interior of a circle in 2D Euclidean space would be the Euclidean norm in 2 dimensions.

While this could be given by p∆sq2 “ p∆xq2 ` p∆yq2, it would be more natural to express in units of r and

θ.

p∆sq2 “ p∆xq2 ` p∆yq2

“ px´ x0q
2 ` py ´ y0q

2

“ r2
”

pcos θ ´ cos θ0q
2 ` psin θ ´ sin θ0q

2
ı

“ r2
”

cos2 θ ` cos2 θ0 ´ 2 cos θ cos θ0 ` sin2 θ ` sin2 θ0 ´ 2 sin θ sin θ0

ı

“ r2
“

1` 1´ 2 cospθ ´ θ0q
‰

“ 2r2
“

1´ cosp∆θq
‰

“ 4r2 sin2
p∆θ{2q

1
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(c) This was not a manifold.

(d) Since this is again 2D Euclidean space, we could use the Euclidean norm in 2 dimensions. This time it

would be more natural to express distances in px, yq coordinates, unless we restricted ourselves to the unit

circle portion of this manifold.

4 Prove the following:

(a) The number of independent terms in B2xα
M

Bxγ
1

Bxµ
1

|P is 40.

The total number of components is 43, however, we do not want to consider duplicate terms. To find the

number of duplicate terms in total, we find the number of duplicate terms for a fixed value of α, and then

multiply that by 4. The number of terms for a fixed α is 42, and of those, 4 are completely independent

(the diagonals), and the remainder exist in pairs. Since we only want one from each pair, we divide the total

count by two, which means that the total number of duplicate components is 4
“

p42 ´ 4q{2
‰

, and so the total

number of non-duplicate components is 43 ´ 4
“

p42 ´ 4q{2
‰

“ 40.

In the next part, I cheat and use a formula. I will apply it to this part first, to show that it works. If you

have a symmetric rank k tensor with n dimensions, then it has

˜

ˆ

n

k

˙

¸

“

ˆ

n` k ´ 1

k

˙

independent components. In the case of this problem, by fixing α, we get 4 rank 2 tensors of 4 dimensions,

and so the total number of independent components is

4

ˆ

4` 2´ 1

2

˙

“ 40.

(b) The number for B2xα
M

Bxλ
1

Bxµ
1

xν
1

|P is 80.

Here, if we fix α, we have 4 symmetric rank 3 tensors of 4 dimensions, and so there are

4

ˆ

4` 3´ 1

3

˙

“ 80

independent components.

(c) The number for gαβ,γ1µ1 |P is 100.

If we interchange αβ, but fix γ1µ1, then we have a symmetric rank 2 tensor of 4 dimensions, which has

ˆ

4` 2´ 1

2

˙

“ 10

independent components. Likewise, if we interchange γ1µ1 but fix αβ, we get 10 independent components.

Multiply the two and we have 100 independent components.

7

(a) Define detpAq in terms of cofactors of elements.

detpAq “
n
ÿ

j“1

p´1qi`jai,jMi,j “

n
ÿ

i“1

p´1qi`jai,jMi,j
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(b) Compute d
dx detpAq, where A is a 2ˆ 2 matrix. Show that this satisfies Equation 6.39.

First we note that, for A1ˆ1, detpAq “ a1,1. Thus, for A2ˆ2, Mi,j “ ai1,j1 , where i ‰ i1 and j ‰ j1. Therefore

we can rewrite the determinant of A2ˆ2 as

detpAq “
2
ÿ

i“1

p´1qi`jai,jai1,j1

“ p´1qj`1a1,ja2,j1 ` p´1qj`2a2,ja1,j1 .

If we assume j “ 1 (it doesn’t really matter if we choose 1 or 2), then this simplifies to

detpAq “ p´1q2a1,1a2,2 ` p´1q3a2,1a1,2

“ a1,1a2,2 ´ a2,1a1,2.

We can then see that the derivative is

B

Bxµ
detpAq “

B

Bxµ
pa11a22 ´ a21a12q

“ a11a22,µ ` a22a11,µ ´ a21a12,µ ´ a12a21,µ

Now to relate this to Equation 6.39, we let A be the metric g. Then the derivative of its determinant is

g,µ “ g11g22,µ ` g22g11,µ ´ g21g12,µ ´ g12g21,µ

“ g11g22,µ ` g22g11,µ ´ 2g12g12,µ.

Now if we expand Equation 6.39, we see we have

g “ g11g22 ´ g12g21 “ g11g22 ´ pg12q
2

gαβgαβ,µ “ g11g11,µ ` g
22g22,µ ` 2g12g12,µ

ggαβgαβ,µ “ pg11g22 ´ pg12q
2qpg11g11,µ ` g

22g22,µ ` 2g12g12,µq

“ g22g11,µ ´ g
11pg12q

2g11,µ ` g11g22,µ ´ g
22pg12q

2g22,µ ` 2g11g22g
12g12,µ ´ 2g12g12,µ

“ g11g22,µ ` g22g11,µ ´ 2g12g12,µ ` 2g11g22g
12g12,µ ´ pg12q

2pg11g11,µ ` g
22g22,µq.

If it is the case that 2g11g22g
12g12,µ´pg12q

2pg11g11,µ`g
22g22,µq “ 0, then this is consistent with our previous

expression for g,µ, but I’m not sure how to show that.

10 A “straight line” on a sphere forms a great circle. The sum of the interior angles of a triangle whose

sides are formed by arcs of great circles is greater than 180˝. Show that the rotation of a vector, parallel

transported around such a triangle (Figure 6.3 in Schutz), is exactly equal to the excess of that 180˝ sum.

11 What guarantees we can find a vector field ~V satisfying:

V α;β “ V α,β ` ΓαµβV
µ “ 0
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(a) The integrability condition follows from the commuting of partial derivatives,
“

Bν , Bβ
‰

V α “ 0. Show

that this implies

pΓαµβ,ν ´ Γαµν,βqV
µ “ pΓαµβΓµσν ´ ΓαµνΓµσβqV

σ “ 0

Since we must satisfy V α,β `ΓαµβV
µ “ 0, then it must be the case that V α,β “ ´ΓαµβV

µ. Differentiating

both sides, we get

V α,βν “ ´Γαµβ,νV
µ ´ ΓαµβV

µ
,ν

“ ´Γαµβ,νV
µ ` ΓαµβΓµλνV

λ

V α,νβ “ ´Γαµν,βV
µ ` ΓαµνΓµσβV

σ

V α,βν “ V α,νβ

ùñ ´Γαµβ,νV
µ ` ΓαµβΓµσνV

σ “ ´Γαµν,βV
µ ` ΓαµνΓµσβV

σ

pΓαµβ,ν ´ Γαµν,βqV
µ “ pΓαµβΓµσν ´ ΓαµνΓµσβqV

σ

(b) By relabeling indices, we can work this into another form:

pΓαµβ,ν ´ Γαµν,βqV
µ “ pΓασβΓσµν ´ ΓασνΓσµβqV

µ

pΓαµβ,ν ´ Γαµν,β ` ΓασνΓσµβ ´ ΓασβΓσµνqV
µ “ 0

13

(a) Show that if ~A and ~B are parallel transported along a curve, their dot product is constant along that

curve.

The dot product being constant along the curve means that it must be parallel transported along the

curve, i.e. ∇~U p
~A ¨ ~Bq “ 0. We will now show this.

∇~U p
~A ¨ ~Bq “ Uλ∇λpgαβA

αBβq

“ UλpAαBβ����∇λgαβ ` gαβB
β∇λA

α ` gαβA
α∇λB

βq

“ BβUλ∇λA
α `AαUλ∇λB

β .

Notice that the terms Uλ∇λA
α and Uλ∇λB

β are just the parallel transport equations, and so they

come out to be zero, meaning ∇~U p
~A ¨ ~Bq “ 0, i.e. the dot product is constant along the curve.

(b) Show that if a geodesic is spacelike, timelike, or null somewhere, then it remains that way everywhere.

Since the dot product of two parallel transported vectors is constant, if we parallel transport a curve’s

tangent vector along itself (the geodesic), its magnitude (~U ¨ ~U) should remain constant. Since its

magnitude doesn’t change, it will remain spacelike, timelike, or null.

14 Show that if the curve in Equation 6.8 is a geodesic, the proper length is an affine parameter.
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Equation 6.8 states

` “

ż λ1

λ0

c∣∣∣~V ¨ ~V ∣∣∣dλ.
If the curve is a geodesic, we have just shown that the dot product of any two vectors remains constant along

the curve, and so we may pull it out of the integral.

` “

c∣∣∣~V ¨ ~V ∣∣∣ ż λ1

λ0

dλ “

c∣∣∣~V ¨ ~V ∣∣∣pλ1 ´ λ0q,

and so the proper length ` is indeed an affine parameter, as it can be obtained by a linear transformation of

the parameter of the curve, λ.

16

(a) Derive Equations 6.59 and 6.60 from 6.68.

Somehow Schutz uses a Taylor expansion to get 6.59 from 6.68. I honestly have no idea how he does

this, and Taylor expanding vectors and Christoffel symbols is black magic to me, so here’s my (obviously

wrong) attempt.

δV α “

ż

x1“a

Γαµ2V
µ dx2 ´

ż

x1“a`δa

Γαµ2V
µ dx2

`

ż

x2“b

Γαµ1V
µ dx1 ´

ż

x2“b`δb

Γαµ1V
µ dx1

«

ż b`δb

b

„

Γαµ2V
µ ` δa

B

Bx1

´

Γαµ2V
µ
¯

∣∣∣∣
a

dx2

´

ż b`δb

b

„

Γαµ2V
µ ` δa

B

Bx1

´

Γαµ2V
µ
¯

∣∣∣∣
a

dx2

`

ż a`δa

a

„

Γαµ1V
µ ` δb

B

Bx2

´

Γαµ1V
µ
¯

∣∣∣∣
b

dx1

´

ż a`δa

a

„

Γαµ1V
µ ` δb

B

Bx2

´

Γαµ1V
µ
¯

∣∣∣∣
b

dx1

« 0

but then a miracle occurred!!

« ´

ż b`δb

b

δa
B

Bx1

´

Γαµ2V
µ
¯

dx2

`

ż a`δa

a

δb
B

Bx2

´

Γαµ1V
µ
¯

dx1

The next step actually does make sense to me. Since we are integrating over such tiny areas (δa and

δb),
şa`δa

a
fpxqdx « δa fpaq, so

ż b`δb

b

δa
B

Bx1

´

Γαµ2V
µ
¯

dx2 « δa δb
B

Bx1

´

Γαµ2V
µ
¯

,

ż a`δa

a

δb
B

Bx2

´

Γαµ1V
µ
¯

dx1 « δa δb
B

Bx2

´

Γαµ1V
µ
¯

.
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Subtracting the two gives us

δV α « δa δb

„

´
B

Bx1

´

Γαµ2V
µ
¯

`
B

Bx2

´

Γαµ1V
µ
¯



.

(b) Derive Equation 6.61 from this.

Using a generalized form of Equation 6.53:

V α,β “ ´ΓαµβV
µ,

we arrive at the expression

pΓανλV
νq,β “ Γανλ,βV

ν ` ΓανλV
ν
,β “ Γανλ,βV

ν ´ ΓανλΓνµβV
ν .

Now we substitute µÑ ν in Equation 6.60, and use this expression to find

δV α « δa δb
”

´Γαν2,1V
ν ` Γαν2Γνµ1V

ν ` Γαν1,2V
ν ´ Γαν1Γνµ2V

ν
ı

« δa δb
”

Γαν1,2 ´ Γαν2,1 ` Γαν2Γνµ1 ´ Γαν1Γνµ2

ı

V ν .

18

(a) Derive Equations 6.69 and 6.70 from 6.68.

Rαβµν “
1

2
pgαν,βµ ´ gαµ,βν ` gβµ,αν ´ gβν,αµq

Rβαµν “
1

2
pgβν,αµ ´ gβµ,αν ` gαµ,βν ´ gαν,βµq

“
1

2
p´gαν,βµ ` gαµ,βν ´ gβµ,αν ` gβν,αµq

“ ´Rαβµν

Rαβνµ “
1

2
pgαµ,βν ´ gαν,βµ ` gβν,αµ ´ gβµ,ανq

“
1

2
p´gαν,βµ ` gαµ,βν ´ gβµ,αν ` gβν,αµq

“ ´Rαβµν

Rµναβ “
1

2
pgµβ,να ´ gµα,νβ ` gνα,µβ ´ gνβ,µαq

“
1

2
pgαν,βµ ´ gαµ,βν ` gβµ,αν ´ gβν,αµq

“ Rαβµν

2pRαβµν `Rανβµ `Rαµνβq “ gαν,βµ ´ gαµ,βν ` gβµ,αν ´ gβν,αµ

` gαµ,νβ ´ gαβ,νµ ` gνβ,αµ ´ gνµ,αβ

` gαβ,µν ´ gαν,µβ ` gµν,αβ ´ gµβ,αν
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“ 0

(b) Show that Equation 6.69 reduces the number of independent components from 4ˆ 4ˆ 4ˆ 4 to 6ˆ 7{2.

For a rank-2 symmetric tensor, you have pn{2qpn` 1q independent components. For an anti-symmetric

tensor you have pn{2qpn ´ 1q independent components. So for each of our pairs of anti-symmetric

indices, there are pn{2qpn´1q independent components. We can then treat the two pairs as a single pair

of symmetric indices, with that many possible values. The number of indices is therefore:

p1{2qrpn{2qpn´ 1qsrpn{2qpn´ 1q ` 1s “ p1{2qrp4{2qp4´ 1qsrp4{2qp4´ 1q ` 1s “ 6ˆ 7{2 “ 21.

(c) Show that Equation 6.70 only imposes one additional relation, separate from Equation 6.69, reducing

the total independent components to 20.

The addition of Equation 6.70 adds the condition that Rαrβµνs “ 0, and so the number of independent

components becomes
˜

ˆ

4

3

˙

¸

“

ˆ

4` 3´ 1

3

˙

“

ˆ

6

3

˙

“ 20.

19 Prove that the components of the Riemann tensor are all zero for polar coordinates in the Euclidean

plane. Recall that:

Γθpθrq “ 1{r; Γrθθ “ ´r

Rαβµν “ Γαβν,µ ´ Γαβµ,ν ` ΓασµΓσβν ´ ΓασνΓσβµ.

According to the computer algebra system, Maxima, the components are all zero.

(%i1) load(ctensor)$

(%i2) ct_coordsys(polar)$

(%i3) cmetric()$

(%i4) lg;

[ 1 0 ]

(%o4) [ ]

[ 2 ]

[ 0 r ]

(%i5) riemann(mcs);

This spacetime is flat

(%o5) done
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24 Using Equation 6.88, derive Equation 6.89.

Rαβµν,λ “
1

2
pgαν,βµλ ´ gαµ,βνλ ` gβµ,ανλ ´ gβν,αµλq

Rαβλµ,ν “
1

2
pgαµ,βλν ´ gαλ,βµν ` gβλ,αµν ´ gβµ,αλνq

Rαβνλ,µ “
1

2
pgαλ,βνµ ´ gαν,βλµ ` gβν,αλµ ´ gβλ,ανµq

2pRαβµν,λ `Rαβλµ,ν `Rαβνλ,µq “ gαν,βµλ ´ gαµ,βνλ ` gβµ,ανλ ´ gβν,αµλ

` gαµ,βλν ´ gαλ,βµν ` gβλ,αµν ´ gβµ,αλν

` gαλ,βνµ ´ gαν,βλµ ` gβν,αλµ ´ gβλ,ανµ

“ 0

25

(a) Prove the Ricci tensor is the only independent contraction of the Riemann tensor. All others are ˘Rαβµν

or 0.

There are three possible ways to contract the Riemann tensor. If we contract on the second lower index,

we have the definition of the Ricci tensor: Rβν “ Rαβαν .

The value of contracting the last index is the easiest to find, and can be found by manipulating the

above expression and invoking the anti-symmetry properties of the Riemann tensor:

Rβν “ Rαβαν “ ´R
α
βνα ùñ Rαβνα “ ´Rβν .

Given this identity, finding the value of the remaining contraction is easy. Equation 6.70 states that

Rαβµν `Rανβµ `Rαµνβ “ 0.

If we raise the α’s with the metric, we get

gαβpRαβµν `Rανβµ `Rαµνβq “ 0

Rββµν `R
β
νβµ `R

β
µνβ “ 0

Rββµν `R
β
νβµ ´R

β
µβν “ 0

Rββµν “ 0

(b) Show that the Ricci tensor is symmetric.

Rβν “ Rαβαν

gαλRβν “ Rλβαν “ Rανλβ
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gαλgαλRβν “ gαλRανλβ “ Rλνλβ “ Rνβ

ùñ Rβν “ Rνβ

28

(a) Derive Equation 6.19 using the coordinate transformation px, y, zq Ñ pr, θ, φq

We begin by finding the basis vectors in pr, θ, φq, using

~er “
Bx

Br
~ex `

By

Br
~ey `

Bz

Br
~ez,

~eθ “
Bx

Bθ
~ex `

By

Bθ
~ey `

Bz

Bθ
~ez,

~eφ “
Bx

Bφ
~ex `

By

Bφ
~ey `

Bz

Bφ
~ez.

The variables transform according to

x “ r sin θ cosφ,

y “ r sin θ sinφ,

z “ r cos θ.

Now we take the derivatives

Bx

Br
“ sin θ cosφ,

Bx

Bθ
“ r cos θ cosφ,

Bx

Bφ
“ ´r sin θ sinφ,

By

Br
“ sin θ sinφ,

By

Bθ
“ r cos θ sinφ,

By

Bφ
“ ´r sin θ cosφ,

Bz

Br
“ cos θ,

Bz

Bθ
“ ´r sin θ,

Bz

Bφ
“ 0.

The basis vectors are therefore

~er “ sin θ cosφ~ex ` sin θ sinφ~ey ` cos θ~ez

~eθ “ r cos θ cosφ~ex ` r cos θ sinφ~ey ´ r sin θ~ez

~eφ “ ´r sin θ sinφ~ex ` r sin θ cosφ~ey

Now we find the components of the metric tensor using the fact that gαβ “ ~eα ¨ ~eβ .

grr “ ~er ¨ ~er “ psin θ cosφq2δxx ` psin θ sinφq2δyy ` pcos2 θq2δzz ` . . .

“ sin2 θ cos2 φ` sin2 θ sin2 φ` cos2 θ “ sin2 θ ` cos2 θ

“ 1,

gθθ “ ~eθ ¨ ~eθ “ pr cos θ cosφq2δxx ` pr cos θ sinφq2δyy ` p´r sin θq2δzz

“ r2pcos2 θ cos2 φ` cos2 θ sin2 φ` sin2 θq
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“ r2pcos2 θ ` sin2 θq

“ r2,

gφφ “ ~eφ ¨ ~eφ “ p´r sin θ sinφq2δxx ` pr sin θ cosφq2δyy

“ r2psin2 θ sin2 φ` sin2 θ cos2 φq

“ r2 sin2 θ.

Now for the off-diagonal elements, we take advantage of the symmetry properties of the metric to reduce

it from 6 terms to 3.

grθ “ gθr “ ~er ¨ ~eθ “ psin θ cosφqpr cos θ cosφqδxx ` psin θ sinφqpr cos θ sinφqδyy ` pcos θqp´r sin θqδzz

“ r
´

sin θ cos θ cos2 φ` sin θ cos θ sin2 φ´ sin θ cos θ
¯

“ 0,

grφ “ gφr “ ~er ¨ ~eφ “ psin θ cosφqp´r sin θ sinφqδxx ` psin θ sinφqpr sin θ cosφqδyy ` pcos θqp0qδzz

“ rp´ sin2 θ sinφ cosφ` sin2 θ sinφ cosφq

“ 0,

gθφ “ gφθ “ ~eθ ¨ ~eφ “ pr cos θ cosφqp´r sin θ sinφqδxx ` pr cos θ sinφqpr sin θ cosφqδyy

“ r2p´ cos θ cosφ sin θ sinφ` cos θ cosφ sin θ sinφq

“ 0.

The metric tensor in spherical polar coordinates is therefore

pgijq “

¨

˚

˚

˚

˚

˝

1 0 0

0 r2 0

0 0 r2 sin2 θ

˛

‹

‹

‹

‹

‚

.

(b) Use Equation 6.19 to find the metric on the surface of a sphere.

On the surface of a sphere, r is fixed, and therefore ∆r “ 0. As a result of this, we do not need to

consider grr, and the only relevant components become pθ, φq. So we can simplify the metric as:

pgijq “

¨

˚

˝

r2 0

0 r2 sin2 θ

˛

‹

‚

.

(c) Find the components of gαβ on the surface of a sphere.

Since gαβ is a diagonal matrix, the components of its inverse are simply equal to their multiplicative
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inverse. So the matrix is

pgijq “

¨

˚

˝

1{r2 0

0 1{r2 sin2 θ

˛

‹

‚

.

29 Calculate the Riemann tensor of the unit sphere in spherical polar coordinates.

The metric for a unit sphere in spherical polars is

pgijq “

¨

˚

˝

1 0

0 sin2 θ

˛

‹

‚

,

and so one component of the Riemann tensor is

Rθφθφ “
1

2

`

gθφ,φθ ´ gθθ,φφ ` gφθ,θφ ´ gφφ,θθ
˘

“
1

2

`

gθθ,φφ ´ gφφ,θθ
˘

“
1

2

˜

B2

Bφ2
1´

B2

Bθ2
sin2 θ

¸

“
1

2
sin2 θ.

Using the symmetry and anti-symmetry properties of the Riemann tensor, we find the remaining components:

Rφθφθ “ sin2 θ

Rθφφθ “ Rφθθφ “ ´ sin2 θ.

All remaining components are zero, as they have indices θθθφ or φφφθ, and the only non-zero second

derivative of the metric is gφφ,θθ, which requires two of each index, not three.

30 Calculate the Riemann tensor on a cylinder.

The metric in cylindrical polars, pr, θ, zq, is given by

pgijq “

¨

˚

˚

˚

˚

˝

1 0 0

0 r2 0

0 0 1

˛

‹

‹

‹

‹

‚

.

On the surface of a cylinder (excluding the top and bottom) the radius is unchanging, so ∆r “, as was the

case on the surface of a sphere. The metric can therefore be simplified in pθ, zq coordinates as:

pgijq “

¨

˚

˝

r2 0

0 1

˛

‹

‚

.

From the metric alone, it is obvious that the components of the Riemann tensor must all be zero. This is

because the Riemann tensor depends on second derivatives of the components of the metric, and the only

variable term is gθθ “ r2. Since we removed the dependence on the coordinate r, none of the terms in the

Riemann tensor will involve differentiating with respect to r, and therefore they will all be zero.
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32 A 4D manifold has coodinates pu, v, w, pq, and a metric

pgαβq “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

(a) Show that the manifold is flat and has signature `2.

Since every element in the metric is a constant, gαβ,µν ” 0, and therefore Rαβµν ” 0, so the manifold is

flat.

The signature is just the sum of the diagonal elements, which in this case is 1` 1 “ 2.

(b) Since this manifold is flat and has signature `2, it must be a Minkowski spacetime. Find a coordinate

transformation to pt, x, y, zq.

Λg “ η

Λgg´1 “ ηg´1

Λ “ ηg´1 “ ηg (since g is symmetric)

pΛαβq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

0 ´1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

33 A three-sphere (or glome) is the 4D analog of a sphere, with cartesian coordinates px, y, z, wq, described

by the equation x2 ` y2 ` z2 ` w2 “ r2, where r is its radius.

(a) Define coordinates pr, θ, φ, χq, given by

x “ r sinχ sin θ cosφ, y “ r sinχ sin θ sinφ,

z “ r sinχ cos θ, w “ r cosχ,

and show that pθ, φ, χq form the coordinates of the surface of the sphere.

Per usual, we begin by finding the elements of the Jacobian

Λ : px, y, z, wq Ñ pr, θ, φ, χq.



6.9. EXERCISES 13

Bx{Br “ sinχ sin θ cosφ, By{Br “ sinχ sin θ sinφ, Bz{Br “ sinχ cos θ, Bw{Br “ cosχ,

Bx{Bθ “ r sinχ cos θ cosφ, By{Bθ “ r sinχ cos θ sinφ, Bz{Bθ “ ´r sinχ sin θ, Bw{Bθ “ 0,

Bx{Bφ “ ´r sinχ sin θ sinφ, By{Bφ “ r sinχ sin θ cosφ, Bz{Bφ “ 0, Bw{Bφ “ 0,

Bx{Bχ “ r cosχ sin θ cosφ, By{Bχ “ r cosχ sin θ sinφ, Bz{Bχ “ r cosχ cos θ, Bw{Bχ “ ´r sinχ.

the basis vectors are then

~eξ “
Bxα

Bξ
~eα

~er “ sinχ sin θ cosφ~ex ~eθ “ r sinχ cos θ cosφ~ex ~eφ “ ´r sinχ sin θ sinφ~ex ~eχ “ r cosχ sin θ cosφ~ex

` sinχ sin θ sinφ~ey ` r sinχ cos θ sinφ~ey ` r sinχ sin θ cosφ~ey ` r cosχ sin θ sinφ~ey

` sinχ cos θ~ez ´ r sinχ sin θ~ez ` r cosχ cos θ

` cosχ~ew ´ r sinχ~ew

Notice that if we fix χ “ π{2, this reduces to the basis vectors for 2D spherical polars.

The components of the metric can be found using gαβ “ ~eα ¨ ~eβ .

grr “ sin2 χ sin2 θ cos2 φηxx ` sin2 χ sin2 θ sin2 φηyy ` sin2 χ cos2 θηzz ` cos2 χηww

“ sin2 χpsin2 θ ` cos2 θq ` cos2 χ “ sin2 χ` cos2 χ “ 1

gθθ “ r2
´

sin2 χ cos2 χ cos2 φηxx ` sin2 χ cos2 θ sin2 φηyy ` sin2 χ sin2 θηzz

¯

“ r2 sin2 χpcos2 θ ` sin2 θq “ r2 sin2 χ

gφφ “ r2
´

sin2 χ sin2 θ sin2 φηxx ` sin2 χ sin2 θ cos2 φηyy

¯

“ r2 sin2 χ sin2 θ

gχχ “ r2
´

cos2 χ sin2 θ cos2 φηxx ` cos2 χ sin2 θ sin2 φηyy ` cos2 χ cos2 θηzz ` sin2 χηww

¯

“ r2
´

cos2 χ sin2 θ ` cos2 χ cos2 θ ` sin2 χ
¯

“ r2
´

cos2 χ` sin2 χ
¯

“ r2

To show that the off-diagonal terms are zero, I got lazy and used the Maxima computer algebra system.

Its naming convention and ordering for these coordinates is different, but it still makes it clear that the

metric is diagonal.

(%i1) load(ctensor)$ /* load the component tensor package */

(%i2) ct_coordsys(spherical4d)$ /* use the 3-sphere metric */

(%i3) lg; /* display the metric */

[ 1 0 0 0 ]

[ ]

[ 2 ]
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[ 0 r 0 0 ]

(%o3) [ ]

[ 2 2 ]

[ 0 0 r sin (theta) 0 ]

[ ]

[ 2 2 2 ]

[ 0 0 0 sin (eta) r sin (theta) ]

So in our notation, the metric tensor is

pgijq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 r2 sin2 χ 0 0

0 0 r2 sin2 χ sin2 θ 0

0 0 0 r2

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

(b) Show that the metric on the surface of the three-sphere only has non-zero components gθθ, gφφ, and gχχ.

On the surface of a three-sphere, r is unchanging, so ∆r is always zero. Thus, we may reduce the

dimensionality of the metric to 3: pθ, φ, χq.

pgijq “

¨

˚

˚

˚

˚

˝

r2 sin2 χ 0 0

0 r2 sin2 χ sin2 θ 0

0 0 r2

˛

‹

‹

‹

‹

‚

.

34 Prove the following identities for a general metric tensor in a general coordinate system. Equations 6.39

and 6.40 will be helpful.

(a) Γµµν “
1
2 pln |g|q,ν

Γµµν “
p
?
´gq,ν
?
´g

“
1

2
?
´g

p´gq,ν
?
´g

“
p´gq,ν
2p´gq

“
|g|,ν
2|g|

“
1

2
pln |g|q,ν

(b) gµνΓαµν “ p´g
αβ?´gq,β{

?
´g

gµνΓαµν “ ´pg
αβ?´gq,β{

?
´g

“ ´pgαβp
?
´gq,β ` g

αβ
,β

?
´gq{

?
´g

“ ´pgαβp
?
´gq,β{

?
´g ` gαβ,β q

“ ´pgαβΓλλβ ` g
αβ
,β q

1

2
gµνgβαpgβµ,ν ` gβν,µ ´ gµν,βq “ ´pg

αβgλσgλσ,β{2` g
αβ
,β q

1

2
gµνgβαpgβµ,ν ` gβν,µq ´ g

µνgβαgµν,β{2 “ ´pg
αβgλσgλσ,β{2` g

αβ
,β q
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1

2
gµνgβαpgβµ,ν ` gβν,µq “ ´g

αβ
,β

´
1

2
gµνpgβα,νgβµ ` g

βα
,µgβνq “ ´g

αβ
,β

´
1

2
pδ ν
β gβα,ν ` δ

µ
β gβα,µq “ ´g

αβ
,β

´
1

2
p2gβα,β q “ ´g

αβ
,β

(c) F
rµνs

;ν “ p
?
´gF rµνsq,ν{

?
´g

F rµνs;ν “ F rµνs,ν ` F
rµνsΓανα “ pF

rµνs
,ν

?
´g ` Fµνp

?
´gq,νq{

?
´g “ p

?
´gFµνq,ν

(d) gασgσβ,γ “ ´g
ασ
,γgσβ We start with gασgσβ “ δαβ . Then we differentiate both sides to get

gασ,γgσβ ` g
ασgσβ,γ “ 0

gασgσβ,γ “ ´g
ασ
,γgσβ

(e) gµν,α “ ´Γµβαg
βν ´ Γνβαg

µβ

gµν;α “ gµν,α ` Γµβαg
βν ` Γνβαg

µβ “ 0

gµν,α “ ´Γµβαg
βν ´ Γνβαg

µβ

35 Compute the metric tensor, Christoffel symbols, and Riemann tensor for a spacetime with line element:

ds2 “ ´e2Φ dt2 ` e2Λ dr2 ` r2pdθ2 ` sin2 θ dφ2q.

Based on the line element, the metric must be

pgαβq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´e2Φ 0 0 0

0 e2Λ 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

˛

‹

‹

‹

‹

‹

‹

‹

‚

pgαβq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´e´2Φ 0 0 0

0 e´2Λ 0 0

0 0 1{r2 0

0 0 0 1{r2 sin2 θ

˛

‹

‹

‹

‹

‹

‹

‹

‚

For the rest of this problem, I took advantage of the Maxima computer algebra system. According to it, the

non-zero, unique Christoffel symbols are

Γrtt “ expp2Φ´ 2Λq
dΦ

dr
Γtrt “

dΦ

dr

Γrrr “
dΛ

dr
Γθrθ “ Γφrφ “

1

r

Γrθθ “ ´ expp´2Λqr Γφθφ “ cot θ

Γrφφ “ ´ expp´2Λqr sin2 θ Γθφφ “ ´ sin θ cos θ
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The independent non-zero components of the Riemann tensor are

Rtθtθ “ exp
`

2pΦ´ Λq
˘

«

dΦ

dr

ˆ

dΛ

dr
´

dΦ

dr

˙

´
d2Φ

dr2

ff

Rtθtθ “ Rtφtφ “ ´
1

r
exp

`

2pΦ´ Λq
˘dΦ

dr

Rrrtt “
dΛ

dr

dΦ

dr
´

d2Φ

dr2
´

ˆ

dΦ

dr

˙2

Rrθrθ “ Rrφrφ “ ´
1

r

dΛ

dr

Rθφθφ “ expp´2Λq ´ 1 Rφφθθ “ expp´2Λq
`

expp2Λq ´ 1
˘

sin2 θ

Rθθtt “ ´r expp´2Λq
dΦ

dr
Rθθrr “ r expp´2Λq

dL

dr

36 Consider a 4D manifold with coordinates pt, x, y, zq and line element

ds2
“ ´p1` 2φqdt2 ` p1´ 2φqpdx2

` dy2
` dz2

q,

with |φpt, x, y, zq| ! 1. At an arbitrary point P with coordinates pt0, x0, y0, z0q, find a coordinate transfor-

mation to LIF. How does this frame accelerate with respect to the original coordinates? Do all of this to

first order in φ.

By inspection of the line element, we can see that the metric has components

pgαβq Ñ
pt,x,y,zq

¨

˚

˚

˚

˚

˚

˚

˚

˝

´p1` 2φq 0 0 0

0 p1´ 2φq 0 0

0 0 p1´ 2φq 0

0 0 0 p1´ 2φq

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

We want a transformation to a Minkowski spacetime, i.e.

Λα
1

αΛβ
1

βgα1β1 “ ηαβ .

Now, there may be multiple transformations which satisfy this, so we need only find one. Since both g and

η are diagonal, I assume that Λ is diagonal as well, and find its components.

η00 “ Λ01

0Λ01

0g0101 ηii “ Λi
1

iΛ
i1

igi1i1

´1 “ pΛ01

0q
2p´p1` 2φqq 1 “ pΛi

1

iq
2p1´ 2φq

Λ01

0 “ p1` 2φq´1{2 Λi
1

i “ p1´ 2φq´1{2

Since we know that φ is small, we can use the approximation p1` xq´1{2 “ p1´ x{2q `O
`

x2
˘

, to find

Λ01

0 « p1´ φq Λi
1

i « p1` φq

(39)


