
Chapter 7

Physics in a curved spacetime

7.6 Exercises

1 If Equation 7.3 were the correct generalization of 7.1 in a curved spacetime, what are the implications?

What would happen to the number of particles in a comoving volume of the fluid over time? May we

experimentally distinguish between Equations 7.2 and 7.3?

The number of particles would change proportionally to the square of the Ricci scalar, which corresponds

to the curvature of the manifold. Whether particles are created (`) or destroyed (´) would depend on the

sign of q in the equation.

We could set up some experiment which tests for a change in the number of particles in a moving fluid, in

various gravitational fields, to verify whether the RHS of the equation is non-zero.

2 Compute gαβ for the line element given by Equation 7.8, to first order in φ.

Based on the line element, we can infer that the metric is

pgαβq Ñ
pt,x,y,zq

¨

˚

˚

˚

˚

˚

˚

˚

˝

´p1` 2φq 0 0 0

0 p1´ 2φq 0 0

0 0 p1´ 2φq 0

0 0 0 p1´ 2φq

˛

‹

‹

‹

‹

‹

‹

‹

‚

pgαβq Ñ
pt,x,y,zq

¨

˚

˚

˚

˚

˚

˚

˚

˝

´p1` 2φq´1 0 0 0

0 p1´ 2φq´1 0 0

0 0 p1´ 2φq´1 0

0 0 0 p1´ 2φq´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

«

¨

˚

˚

˚

˚

˚

˚

˚

˝

´p1´ 2φq 0 0 0

0 p1` 2φq 0 0

0 0 p1` 2φq 0

0 0 0 p1` 2φq

˛

‹

‹

‹

‹

‹

‹

‹

‚

3 Calculate the Christoffel sybmols for the metric given by Equation 7.8, to first order in φ, assuming

φ “ φpt, x, y, zq.

I do the following with the assistance of the free computer algebra system Maxima. I used the exact form of

1
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the metric tensor, and then approximated the resulting Christoffel symbols to first order in φ.

Γttα “
Bφ

Bxα
1

1` 2φ
«
Bφ

Bxα
p1´ 2φq Γαtα “ ´

Bφ

Bt

1

1´ 2φ
« ´

Bφ

Bt
p1` 2φq

Γitt “
Bφ

Bxi
1

1´ 2φ
«
Bφ

Bxi
p1` 2φq Γtii “ ´

Bφ

Bt

1

1` 2φ
«
Bφ

Bt
p1´ 2φq

Γijj “ ´Γjij “ ´Γiii “
Bφ

Bxi
1

1´ 2φ
«
Bφ

Bxi
p1` 2φq

5

(a) In the case of a perfect fluid, verify that the spatial components of Equation 7.6 reduce to

9v ` pv ¨∇qv `∇p{ρ`∇φ “ 0

in the Newtonian limit and in the weak-field regime (the metric given by Equation 7.8).

Tµν “ pρ` pqUµUν ` pgµν

« ρUµUν ` pgµν

« mUµpnUνq ` pgµν

T iν « mU ipnUνq ` pgiν

T iν;ν « mrU ipnUνqs;ν ` rpg
iνs;ν “ mnUνU i;ν ` g

iνp;ν “ 0

ùñ 0 “ UνU i;ν ` g
iνp;ν{ρ

“ UνpU i,ν ` U
λΓiλνq ` g

iνp,ν{ρ

“ U0U i,0 ` U
jU i,j ` U

νUλΓiλν ` g
iνp,ν{ρ

“ γ
d

dτ
pγviq ` γvjpγviq,j ` U

νUλΓiλν ` g
iip,i{ρ

«
dvi

dτ
` vjvi,j ` pU

0q2Γi00 ` p1´ 2φqp,i{ρ

«
dvi

dτ
` vjvi,j ` φ,i ` p,i{ρ

rewriting this in vector form, we get the original equation.

(b) Now look at the time-component instead of the spatial component.

T 0ν “ pρ` pqU0Uν ` pg0ν « mU0pnUνq ` pg0ν

T 0ν
;ν “ mrU0pnUνqs;ν ` rpg

0νs;ν “ mnUνU0
;ν ` g

00p,ν “ 0

ùñ 0 “ UνU0
;ν ` g

00 9p{ρ

“ UνpU0
,ν ` U

λΓ0
λνq ` g

00 9p{ρ
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“ U0U0
,0 ` U

iU0
,i ` U

νUλΓ0
λν ` g

00 9p{ρ

«
1

2

dv2

dτ
`

1

2
vi

dv2

dxi
` UνU0Γ0

0ν ´ p1` 2φq 9p{ρ

«
1

2

dv2

dτ
`

1

2
vi

dv2

dxi
` UνU0Γ0

0ν ´ 9p{ρ

«
1

2

dv2

dτ
`

1

2
vi

dv2

dxi
` UνU0φ,ν ´ 9p{ρ

«
1

2

dv2

dτ
`

1

2
vi

dv2

dxi
` 9φ` viφ,i ´ 9p{ρ

(c) A metric is static if there exist coordinates such that ~e0 is timelike, gi0 “ 0, and gαβ,0 “ 0. Show from

Equation 7.6 that a static fluid (i.e. U i “ 0, p,0 “ 0, etc) obeys the relativistic equation of hydrostatic

equilibrium (Equation 7.40):

p,i ` pρ` pq

„

1

2
lnp´g00q



,i

“ 0.

We start by writing out Equation 7.6 as

Tµν;ν “ rpρ` pqU
µUνs;ν ` rpg

µνs;ν “ 0

“ rpρ` pqUµsUν;ν ` rpρ` pqU
νsUµ;ν ` U

νUµpρ` pq,ν ` g
µνp,ν “ 0

“ T 00
;0 ` T

ij
;j ` T

0i
;i ` T

i0
;0 “ 0

T 00
;0 “ rpρ` pqU

0sU0
;0 ` rpρ` pqU

0sU0
;0 ` U

0U0pρ` pq,0 ` g
00p,0

“ 2pρ` pqU0U0
;0

“ 2pρ` pqU0rU0
,0 ` U

λΓ0
0λs

“ 2pρ` pqrU0s2Γ0
00 “ 0

T ij;j “ rpρ` pqU
isU j;j ` rpρ` pqU

jsU i;j ` U
jU ipρ` pq,j ` g

ijp,j

“ gijp,j

T 0i
;i “ rpρ` pqU

0sU i;i ` rpρ` pqU
isU0

;i ` U
iU0pρ` pq,i ` g

0ip,i

“ rpρ` pqU0sU i;i “ pρ` pqU
0rU i,i ` U

λΓiiλs

“ pρ` pqrU0s2Γii0

“
1

2
rU0s2pρ` pqgiαpgαi,0 ` gα0,i ´ g0i,αq “ 0

T i0;0 “ rpρ` pqU
isU0

;0 ` rpρ` pqU
0sU i;0 ` U

0U ipρ` pq,0 ` g
i0p,0

“ rpρ` pqU0sU i;0 “ pρ` pqU
0rU i,0 ` U

0Γi00s

“
1

2
pρ` pqrU0s2giαpgα0,0 ` gα0,0 ´ g00,αq “ ´

1

2
pρ` pqrU0s2gijg00,j

“
1

2
pρ` pqgijg00,j{g00 “

1

2
pρ` pqgij lnp´g00q,j

Tµν;ν “ gijp,j `
1

2
pρ` pqgij lnp´g00q,j “ 0

“ p,j ` pρ` pq

„

1

2
lnp´g00q



,j

“ 0
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(d) This suggests that there is a relationship between g00 and expp2φq in the case of a static fluid in a

Newtonian potential. Show that Equation 7.8 and Exercise 4 are consistent with this.

In the Newtonian limit, the previous equation is unchanged when replacing ng00 with´ expp2φq, as ln
`

expp2φq
˘

,i
“

2φ,i, and

lnp´g00q,i “ lnp1` 2φq,i “
p1` 2φq,i

1` 2φ

“ 2φ,ip1` 2φq´1 « 2φ,ip1´ 2φq « 2φ,i.

I’m not really sure how to relate this to Exercise 4, as it relates φ,α to four-momentum, while this relates it

to pressure and density.

7 Consider the (i) Minkowski, (ii) Schwarzschild, (iii) Kerr, and (iv) Robertson–Walker metrics.

(a) Find the conserved components pα of a the four-momentum of a particle in free-fall.

For this I will use Equation 7.29:

m
dpβ
dτ

“
1

2
gνα,βp

νpα.

What this tells us is that if gαβ is independent of xµ, then pµ is constant along the trajectory.

For (i), the metric is independent of all coordinates pt, x, y, zq, and so all pα are conserved.

For (ii), the metric depends on coordinates r and θ, but not t and φ, so only pt and pφ are conserved.

For (iii) we have the same dependencies as (ii).

For (iv) there is an additional time dependence, and so only pφ is conserved.

(b) Use the metric for a flat spacetime in spherical polar coordinates to argue that the Schwarzschild and

Robertson–Walker metrics are spherically symmetric.

Our metric in (i) can be expressed in spherical polars as

ds2 “ ´dt2 ` dr2 ` r2pdθ2 ` sin2 θ dφ2q.

The Schwarzschild metric can be obtained from this by multiplying dt2 by p1´ 2M{rq, and dividing dr2 by

it. This newly introduced term only introduces a new radial dependence (the r´1 term), not an angular one,

so it retains spherical symmetry.

The Robertson–Walker metric can be obtained by dividing dr2 by p1´kr2q, and then multiplying everything

except dt2 by R2ptq. Again, the p1´ kr2q term only introduces a radial dependence in its r2 term, and for a

given time t, R2ptq is a constant, so spherical symmetry is retained.

(c) For (i’) and (ii)–(iv), a geodesic which at one point has θ “ π{2 and pθ “ 0 (i.e. tangent to the equatorial

plane) conserves these quantities. For (i’), (ii), and (iii),use ~p ¨ ~p “ ´m2 to find pr as a function of m, other

conserved quantities, and known functions of position.

(i’)

~p ¨ ~p “ gαβp
αpβ “ gααpp

αq2 “ gttpp
tq2 ` grrpp

rq2 ` gθθp�
�7

0

pθq2 ` gφφpp
φq2
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“ ´pptq2 ` pprq2 ` r2���
�:1

sin2
pθqppφq2 “ ´m2

ùñ pprq2 “ pptq2 ´ r2ppφq2 ´m2 “ gttpptq
2 ´ r2gφφppφq

2 ´m2 “ ´pptq2 ´ ppφq2 ´m2

ùñ pr “ ˘
b

´rpptq2 ` ppφq2 `m2s

(ii)

~p ¨ ~p “ gttpp
tq2 ` grrpp

rq2 ` gφφpp
φq2

“ ´p1´ 2M{rqpptq2 ` p1´ 2M{rq´1pprq2 ` r2��
�:1

sin2 θppφq2 “ ´m2

ùñ pprq2 “ p1´ 2M{rqrp1´ 2M{rqpptq2 ´ r2ppφq2 ´m2s

“ ´p1´ 2M{rqrp1´ 2M{rqpptq
2 ` ppφq

2 `m2s

(iii) This metric gets a bit messy, so I will keep things more abstract. First, I will simplify the metric,

utilizing the fact that θ “ π{2.

ds2 “ ´
∆´ a2

r2
dt2 ´ 2

2Ma

r
dtdφ`

pr2 ` a2q2 ´ a2∆

r2
dφ2 `

r2

∆
dr2 ` r2dθ2

gtt “ ´
∆´ a2

r2
; grr “

r2

∆
; gθθ “ r2; gφφ “

pr2 ` a2q2 ´ a2∆

r2
; gtφ “ ´

2Ma

r
,

λ ” a6 ´ 2pD ´ r2qa4 ` pr4 ´ 4M2r2 ´ 2Dr2 `D2qa2 ´Dr4

gtt “ r2pa4 ´ pD ´ 2r2qa2 ` r4q{λ; grr “
D

r2
; gθθ “

1

r2
; gφφ “ r2pa2 ´Dq{λ; gtφ “ 2aMr3{λ,

~p ¨ ~p “ gttpp
tq2 ` grrpp

rq2 ` gφφpp
φq2 ` 2gtφpp

tpφq “ ´m2

pr “ ˘
b

´grrrgttpptq2 ` gφφppφq2 ` 2gtφpptpφq `m2s

pt “ gtαpα “ gφφpt ` g
tφpφ

pφ “ gφαpα “ gφφpφ ` g
tφpt

(d)

When k “ 0, the line element and metric become

ds2 “ ´dt2 `R2ptqrdr2 ` r2pdθ2 ` sin2 θdφ2qs

gtt “ ´1; grr “ R2ptq; gθθ “ R2ptqr2; gφφ “ R2ptqr2 sin2 θ.

Equation 7.29 with β “ r then becomes

m
dpr
dτ

“
1

2
gνα,rp

νpα “
1

2
rgtt,rpp

tq2 ` grr,rpp
rq2s.

Since gtt,r “ grr,r “ 0, the RHS becomes zero, and so

m
dpr
dτ

“ 0 ùñ pr is conserved.

8 For a coordinate system where gαβ,µ “ 0:
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(a) Show that T νµ;ν “ 0 becomes
1

?
´g
p
?
´gT νµ qν “ 0.

For this, I will make mathematicians cry, and go from the solution backwards to the starting point. So I

expand the final expression, first using the Leibniz rule:

T νµ,ν `
p
?
´gqν
?
´g

T νµ “ 0,

and then using Equation 6.40:

T νµ,ν ` Γααν “ 0.

Just pretend I did that backwards. Next I expand T νµ;ν , to show that the above expression makes it zero.

T νµ;ν “ T νµ,ν ` T
α
µ Γναν ´ T

ν
α Γαµν

“ T νµ,ν ` T
ν
µ Γανα ´ T

ν
α Γαµν .

Note that the positive terms are just the expression from before, which we showed was zero, so we’re left

with

T νµ;ν “ T να Γαµν .

Now we expand this

T νµ;ν “ ´
1

2
T να g

αβpgβµ,ν `���gβν,µ ´ gµν,βq

“ ´
1

2
T νβpgβµ,ν ´ gµν,βq “ ´

1

2
T pνβqArνβsµ “ 0.

(b) Suppose Tαβ is zero except in a bounded region of the space-like hypersurface x0 “ constant. Show that

Equation 7.41 implies that
ż

x0“const

T νµ
?
´gnν d3x

does not depend on x0, so long as nν is the unit normal to the hypersurface.

Using Equation 7.41 and the differential in Equation 6.18, we take the integral

ż

1
?
´g
p
?
´gT νµ qν

?
´g d4x “

ż

p
?
´gT νµ q,ν d4xd4x .

Now we use Equation 6.44:

ż

p
?
´gT νµ q,ν d4xd4x “

¿

?
´gnνT

ν
µ d3S

“

ż

x0“const

?
´gnνT

ν
µ d3x

(c) Now consider flat Minkowski space with a global inertial frame in spherical polar coordinates. Show that,

from part (b), we have

J “

ż

t“const

T 0
φ r

2 sin θ dr dθdφ,
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which is independent of t. This is the system’s total angular momentum.

Since we are in flat Minkowski space, the unit-normal one form has components ñÑ p1, 0, 0, 0q, so only the

T 0
µ term is retained. We also have x0 Ñ t, so we can write the expression from (b) as

ż

t“const

?
´gT 0

µ d3x .

We also know that
?
´g d3x in spherical polars is r2 sin θ dr dθdφ, so we can write this as

ż

t“const

T 0
µ r

2 sin θ dr dθdφ.

Taking the φ component of T 0
µ , we get something which we call J :

J “

ż

t“const

T 0
φ r

2 sin θ dr dθdφ.

(d) Now express the previous integral in terms of the components of Tαβ on the Cartesian basis, ultimately

arriving at

J “

ż

pxT y0 ´ yT x0qdxdy dz

J “

ż

t“const

T 0
φ r

2 sin θ dr dθdφ

“

ż

t“const

ΛαφT
0
α r

2 sin θ d3x

“

ż

t“const

pΛxφT
0
x ` ΛyφT

0
y ` ΛzφT

0
z qd3x

“

ż

t“const

pp´r sin θ sinφqT 0
x ` pr sin θ cosφqT 0

y ` p0qT
0
z qd3x

“

ż

t“const

pxT 0
y ´ yT

0
x qd3x

“

ż

t“const

pηyyxT
0y ´ ηxxyT

0xqd3x

“

ż

t“const

pxT 0y ´ yT 0xqd3x

10

(a) Show that if the vector field ξα satisfies Killing’s equation,

∇αξβ `∇βξα “ 0,

then pαξα is constant along a geodesic.

If pαξα is constant along a geodesic, then pαξα;β “ 0, so we simply have to show that this follows from

Killing’s equation.

Killing’s equation can be rewritten as

ξβ;α ` ξα;β “ 0 ùñ ξβ;α “ ´ξα;β .
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Now we combine this with the geodesic equation,

pαξβ;α “ ´p
αξα;β “ 0.

And there we have it!

(b) Find ten Killing fields for Minkowski spacetime.

Since the basis vectors in Minkowski spacetime are all constant, ∇β~eα “ 0, and so we get four from ~et, ~ex,

~ey, ~ez. According to part (c), we get a Killing field from any constant linear combination of these four, and

so from that we may create an infinity of Killing fields. Schutz’s solutions manual also lists expressions such

as x~et ´ t~ex as Killing fields, which are linear combinations, but the coefficients are non-constant. I give an

attempted derivation below, although at the very last step it turns out not to work, and I pretend it does

anyway. I claim that the general form of Schutz’s expressions is: xα~eβ ´ x
β~eα.

∇αpx
α~eβq ´∇αpx

β~eαq `∇βpx
α~eβq ´∇βpx

β~eαq “ xα;α~eβ ´ x
β
;α~eα ` x

α
;β~eβ ´ x

β
;β~eα

“ ~eβ ´ ~eα ´ x
β
,α~eα ` x

α
,β~eβ

“ ~eβ ´ ~eα ´ Λβα~eα ` Λαβ~eβ

(magnets at work here)

“ ~eβ ´ ~eα ´ ~eβ ` ~eα “ 0

(c) Prove that any constant linear combination of two Killing fields ~ξ and ~η is itself a Killing field.

∇µξν `∇νξµ “ 0

∇µην `∇νηµ “ 0

∇µpαξν ` βηνq `∇νpαξµ ` βηµq

“α∇µξν ` β∇µην ` α∇νξµ ` β∇νηµ

“αp∇µξν `∇νξµq ` βp∇µην `∇νηµq “ 0

(d) Show that the Lorentz transforms of the fields in (b) are also Killing fields.

Applying a Lorentz transform Λµν we get the expression Λµν
`

xα~eβ ´ x
β~eα

˘

.

∇αrΛ
µ
νpx

α~eβ ´ x
β~eαqs `∇βrΛ

µ
νpx

β~eα ´ x
α~eβqs

“Λµν;αrpx
α~eβ ´ x

β~eαq ` px
β~eα ´ x

α~eβqs

“Λµν;αrx
α~eβ ´ x

α~eβ ` x
β~eα ´ x

β~eαs “ 0

(e) Use the results in Exercise 7(a) to find Killing vectors for the non-Minkowski metrics listed in (ii)–(iv).

(ii) Since the conserved quantities are pt and pφ, then the Killing fields are any constant linear combinations
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or Lorentz transforms of ~et, ~eφ, and φ~et ´ t~eφ.

(iii) Same as (ii).

(iv) Only pφ is conserved, so any constant multiple of ~eφ is a Killing field.


