
Chapter 8

The Einstein field equations

8.6 Exercises

3

(a) Calculate in geometrized units:

(i) the Newtonian potential of the Sun at its surface

φ “ ´GM@{R@ « ´1.476ˆ 103 m{6.960ˆ 108 m « ´2.12ˆ 10´6

(ii) the Newtonian potential of the Sun at the radius of Earth’s orbit

φ “ ´GM@{1 AU « ´1.476ˆ 103 m{1.496ˆ 1011 m « ´9.866ˆ 10´9

(iii) the Newtonian potential of the Earth at its surface

φ “ ´GMC{RC « ´4.434ˆ 10´3 m{6.371ˆ 106 m « ´9.660ˆ 10´10

(iv) the Earth’s orbital velocity

Here I use the result from part (c), and find that

v “
a

´φ « 9.933ˆ 10´5

(b) If the potential due to the Sun at Earth’s orbital radius is greater than the Earth’s potential at its surface

(as is shown above), then why do we feel the Earth’s gravity more than the Sun’s?

We don’t feel the potential directly, we feel the gravitational acceleration it produces. Acceleration is obtained

from the potential via a “ ´∇φ, and in the case of a circular orbit in a Newtonian potential:

a “ ´∇φ “ ´
B

Br
p´GM{rq “ ´Gm{r2 “ φ{r.
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So in the two cases mentioned, we need to divide by the radius once more, to obtain the acceleration.

a@ “ φ@{1 AU « ´6.595ˆ 10´20 m´1

aC “ φC{RC « ´1.092ˆ 10´16 m´1

As you can see, the acceleration due to the Earth is greater by a factor of 104.

(c) Show that a circular orbit in a Newtonian potential has an orbital velocity v2 “ ´φ.

We saw above that a “ φ{r, and we also know that centripetal acceleration is given by a “ ´v2{r. Equating

the two we get v2 “ ´φ.
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(a) Show that Rαβµν “ ηασRαβµν `Oprhαβs2q.

Rαβµν “ gασRσβµν “ pη
ασ ` hασqRσβµν “ ηασRσβµν ` h

ασRσβµν

hασRσβµν “
1

2
hασphσν,βµ ` hβµ,σν ´ hσµ,βν ´ hβν,σµq “ Oprhαβs2q

(b) Find Rαβ to first order in hµν .

Rαβµν « ηασRσβµν

δµαR
α
βµν « Rβν « δµαη

ασRσβµν « ηµσRσβµν

(c) Show that gαβR “ ηαβη
µνRµν `Oprhαβs2q.

R “ gµνRµν “ pη
µν ` hµνqRµν “ ηµνRµν ` η

µγηνλRµν “ ηµνRµν `Oprhαβs2q

gαβR “ gαβη
µνRµν `Oprhαβs2q “ pηαβ ` hαβqηµνRµν `Oprhαβs2q “ ηαβη

µνRµν `Oprhαβs2q

(d) Use this to show that Gαβ “ Rαβ ´
1
2ηαβR.

Gαβ “ Rαβ ´
1

2
gαβR “ Rαβ ´

1

2
pηαβη

µνRµνq “ Rαβ ´
1

2
ηαβR

(e) Now use this to simplify the calculation of Equation 8.32.

I got stuck here. I began by expanding the expression in (d) using the results from previous sections, shown

in Figure 8.1a. Then I expanded Equation 8.32, to get it in a more similar form, in Figures 8.1b and 8.1c.

I did this with the hope of matching terms in the two equations, but was only able to match one. I believe

something that would help me get further is Equation 8.33, h̄µν,ν “ 0.
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(a)

(b) (c)

Figure 8.1: Incomplete solution to Problem 8.8 (e)

I start by making a slight rewrite of Equation 8.32, changing the second h̄ term.

ηαβh̄
,µν

µν “ ηαβη
µαh̄ ,ν

µν,α “ h̄ ,ν
βν,α

So now the Einstein tensor can be written as

Gαβ “ ´
1

2
rh̄ ,µ
αβ,µ ` h̄ ,ν

βν,α ´ h̄ ,µ
αµ,β ´ h̄ ,µ

βµ,α `Oprhαβs2qs.

For G00 we then have

G00 “ ´
1

2
rh̄ ,µ

00,µ ` h̄ ,ν
0ν,0 ´ h̄ ,µ

0µ,0 ´ h̄ ,µ
0µ,0 `Oprh00s2qs

“ ´
1

2
rh̄ ,µ

00,µ ´ h̄ ,µ
0µ,0 `Oprh00s2qs

“ ´
1

2
rph̄ ,0

00,0 ` h̄ ,i
00,i q ´ ph̄

,0
00,0 ` h̄ ,i

0i,0 q `Oprh00s2qs

“ ´
1

2
rh̄ ,i

00,i ´ h̄
,i

0i,0 `Oprh00s2qs,

which contains no second time derivatives. For G0i I encountered a problem:

G0i “ ´
1

2
rh̄ ,µ

0i,µ ` h̄ ,ν
iν,0 ´ h̄ ,µ

0µ,i ´ h̄ ,µ
iµ,0 `Oprh0is2qs

“ ´
1

2
rh̄ ,µ

0i,µ ´ h̄ ,µ
0µ,i `Oprh0is2qs

“ ´
1

2
rph̄ ,0

0i,0 ` h̄ ,j
0i,j q ´ h̄

,µ
0µ,i `Oprh0is2qs,

which retains a second time derivative in the h̄ ,0
0i,0 term.
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(b)

According to Schutz’s solution it is not a contradiction, due in part to Equation 8.33. I don’t fully understand

the reason, though.

11 Write the gauge transformation and Lorentz gauge condition in four-tensor notation for Maxwell’s equa-

tions. Draw an analogy with linearized gravity.

First we rewrite φ Ñ φ ´ Bf{Bt as ´A0 Ñ ´A0 ´ f,0, and cancelling the negatives we get A0 Ñ A0 ` f,0.

Combining this with Ai Ñ Ai`f,i, it is obvious that the gauge transformation generalizes to Aα Ñ Aα`f,α.

The Lorentz gauge condition is just slightly less obvious. We start by noting that A0 “ ´φ, and therefore

(in Minkowski space) A0 “ η0µAµ “ g00A0 “ p´1qp´φq “ φ. Then the Lorentz gauge condition becomes

φ,0 `∇iA
i “ A0

,0 `A
i
,i “ Aα,α “ 0. This is analogous to h̄µν,ν .

13 Give a physical justification for
∣∣T 00

∣∣ " ∣∣T 0i
∣∣ " ∣∣T ij∣∣ in a Newtonian system.

The first inequality is easy to see. T 00 “ E{V “ p0{V , and T 0i “ pi{V . In the Newtonian limit,
∣∣p0∣∣ " ∣∣pi∣∣,

and so it follows that
∣∣T 00

∣∣ " ∣∣T 0i
∣∣.

The second inequality is less obvious. In the Newtonian limit, forces must be relatively small, or else objects

would be accelerated to relativistic speeds. By this argument, the stresses must also be relatively small, and

so T 0i " T ij .
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(a) First I need to convert the orbital period into meters.

T “ 200 daysˆ
24 hours

1 day
ˆ

3600 seconds

1 hour
ˆ c « 5.18ˆ 1015 m

Then I use the potential to find the speed, which I relate to the circumference and orbital period, and solve

for the mass.

φ “ ´GM{r

v2 “ ´φ

M “ v2r{G “ C3{p2πT 2Gq « p6ˆ 1011 mq3{p2πp5.18ˆ 1015 mq2Gq

« 1.281ˆ 103 mˆ
1M@

1.476ˆ 103 m
« 0.868M@

(b)

Using the above formula, I get a distribution of mass estimates, shown in Figure 8.2. Closer to the black hole,

the Newtonian approximation breaks down, and the “effective mass” blows up. Far from the black hole, we

can see that the effective mass is in agreement for all of the sattelites, and so the Newtonian approximation

is working again. Thus, I use the furthest sattelite to find that the black hole’s mass is 68M@.
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Figure 8.2: Black hole mass estimates in Problem 8.17, as a function of sattelite circumference.


