Chapter 8

The Einstein field equations

8.6 Exercises

3
(a) Calculate in geometrized units:

(i) the Newtonian potential of the Sun at its surface
¢ = —GMp/Re ~ —1.476 x 10°m/6.960 x 108 m ~ —2.12 x 107°
(ii) the Newtonian potential of the Sun at the radius of Earth’s orbit
¢ =—-GMe/1 AU ~ —1.476 x 10° m/1.496 x 10! m ~ —9.866 x 10°
(iii) the Newtonian potential of the Earth at its surface
¢ = —GMg/Re ~ —4.434 x 1072 m/6.371 x 10°m ~ —9.660 x 10~1°

(iv) the Earth’s orbital velocity

Here I use the result from part (c), and find that
v=1/—0¢~9.933 x107°

(b) If the potential due to the Sun at Earth’s orbital radius is greater than the Earth’s potential at its surface
(as is shown above), then why do we feel the Earth’s gravity more than the Sun’s?

We don’t feel the potential directly, we feel the gravitational acceleration it produces. Acceleration is obtained

from the potential via a = —V ¢, and in the case of a circular orbit in a Newtonian potential:
J 2
a=-Vo¢= —5(—GM/7’) = —Gm/r° = ¢/r.
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So in the two cases mentioned, we need to divide by the radius once more, to obtain the acceleration.

ae = ¢po/1 AU ~ —6.595 x 1072 m ™!

ae = pa/Re ~ —1.092 x 10716 m1

As you can see, the acceleration due to the Earth is greater by a factor of 10%.

(c) Show that a circular orbit in a Newtonian potential has an orbital velocity v? = —¢.

We saw above that a = ¢/r, and we also know that centripetal acceleration is given by a = —v?/r. Equating
the two we get v? = —¢.
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(a) Show that R% , = 1%’ Ropuw + O([hap)?).

Raﬁ,uu _ gaaRJﬂ#U _ (naa + haU)RJB;w _ naURUﬁ,uV + haaRa‘ﬂlLl/

oo 1 oo
N Roy = 5H07 (B + A = oo = o) = Ollhas]?)

(b) Find Rap to first order in hy,,.

Ra[‘]#u ~ 77w RU,BNV

(VLO‘RaﬁliV ~ RBV ~ 5”(177&03013#:/ & nHURaﬁ#u

(c) Show that gagR = a0 Ry + O([hap]?).

R=g" Ry = 0" + W) Ry = 1" Ry + 0" Ry, = 1" Ry + O([hap]?)

9apR = gap" Ruw + O([hap)?®) = (s + hap)n™ Ry + O([has)?) = napn®™ Ruw + O([has]?)

(d) Use this to show that Gag = Rag — 37asR.

1 1 , 1
Gap = Rap = 59ap7 = Rap = 5 0lasn™ Ryw) = Ras = 5nap R

(e) Now use this to simplify the calculation of Equation 8.32.

I got stuck here. T began by expanding the expression in (d) using the results from previous sections, shown
in Figure 8.1a. Then I expanded Equation 8.32, to get it in a more similar form, in Figures 8.1b and 8.1c.
I did this with the hope of matching terms in the two equations, but was only able to match one. I believe
something that would help me get further is Equation 8.33, ﬁ“”,u =0.
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(b) ()

Figure 8.1: Incomplete solution to Problem 8.8 (e)

I start by making a slight rewrite of Equation 8.32, changing the second h term.

v

naﬁﬁ;w’lw = %ﬁﬁ“aﬁw,a’y = Eﬁu,a7
So now the Einstein tensor can be written as
1 A SH 7 g h M h K 2
Gap = =5lhap ™ +pu0” = haps” =lgua™ + O[has]?)]-

For Ggg we then have

1 = - v T 1
Goo = _Q[hoo,;/” +hoyo” = oo™ = oo™ + O([hoo])]

1 _ _
= _i[hoo,u’ﬂ —hguo’ + O([hoo]®)]

1o+ T = T
= _5[(h00,0’0 +hooi) — (hoo,o’0 +hoio") + O([hoo]*)]

[
= _§[h00,i’ —hoio" + O([hool*)],

which contains no second time derivatives. For Gg; I encountered a problem:

1 L _
Goi = _E[hOi,,u’M R0 = Rt = o™ F O([hoi]?)]
1 - _
= _E[hm,u’u —ho" + O([hoi]*)]
1

= _‘[(BOi,O’O + Boz‘,j’j) - Bow"u + O([hoi]*)],

[\)

which retains a second time derivative in the }_lOi 0’0 term.
b
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(b)

According to Schutz’s solution it is not a contradiction, due in part to Equation 8.33. I don’t fully understand
the reason, though.

11 Write the gauge transformation and Lorentz gauge condition in four-tensor notation for Maxwell’s equa-
tions. Draw an analogy with linearized gravity.

First we rewrite ¢ — ¢ — 0f/0t as —Ag — —Ao — f0, and cancelling the negatives we get Ay — Ao + fo.
Combining this with 4; — A; + f;, it is obvious that the gauge transformation generalizes to Ay, — Aq+ f -
The Lorentz gauge condition is just slightly less obvious. We start by noting that Ay = —¢, and therefore
(in Minkowski space) A° = n%A4,, = ¢4y = (—=1)(—¢) = ¢. Then the Lorentz gauge condition becomes
g0+ VAl = A% )+ A" = A~ = 0. This is analogous to h*” .

13 Give a physical justification for |T00| »> |T0i| > |Tij| in a Newtonian system.

The first inequality is easy to see. T% = E/V = p"/V, and T% = p'/V. In the Newtonian limit, [p°| » |p’|,
and so it follows that |7°0] » |T%|.

The second inequality is less obvious. In the Newtonian limit, forces must be relatively small, or else objects
would be accelerated to relativistic speeds. By this argument, the stresses must also be relatively small, and
so T » T,
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(a) First I need to convert the orbital period into meters.

24 hours " 3600 seconds
1day 1 hour

T = 200 days x X ¢~ 5.18 x 10 m

Then I use the potential to find the speed, which I relate to the circumference and orbital period, and solve

for the mass.

¢ =—-GM/r

M =’r/G = C3/(2nT?G) ~ (6 x 10 m)3 /(27 (5.18 x 10'° m)%G)
1M

~1.281 x10°m x ——————
1.476 x 10°m

~ 0.868M¢o

(b)

Using the above formula, I get a distribution of mass estimates, shown in Figure 8.2. Closer to the black hole,
the Newtonian approximation breaks down, and the “effective mass” blows up. Far from the black hole, we
can see that the effective mass is in agreement for all of the sattelites, and so the Newtonian approximation

is working again. Thus, I use the furthest sattelite to find that the black hole’s mass is 68 Me.
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Figure 8.2: Black hole mass estimates in Problem 8.17, as a function of sattelite circumference.



