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Chapter 1

Special relativity

1.1 Fundamental principles of special relativity (SR) theory

Special relativity can be summarized by two fundamental postulates:

1. The principle of relativity (Galileo), which states that no experiment may measure the absolute velocity

of an observer.

2. The universality of the speed of light (Einstein), which states that the speed of light is constant when

measured from any inertial reference frame.

1.2 Definition of an inertial observer in SR

When we say “observer”, what we really mean is a coordinate system. Thus an inertial observer is a

coordinate system that meets the following 3 criteria:

1. The distance between two spatial points P1 and P2 is independent of time.

2. Time is synchronized and moves at the same rate at all spatial points.

3. At any constant time, space is Euclidean.

It follows from these criteria that the observer must be unaccelerated.

1.3 New units

The speed of light, c, is approximately 3.00ˆ 108 ms´1 in SI units. However, these units predate relativity,

and are very inconvenient. Life becomes easier if we define our units around c, such that c ” 1.
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6 CHAPTER 1. SPECIAL RELATIVITY

This can be done by repurposing the meter as a measure of time as well. We thereby define the meter as

“the time it takes light to travel 1 meter”. Thus the speed of light becomes

c “
1 m

1 m
.

Indeed, it turns out in SR that time is most conveniently measured in distance (c “ 3.00ˆ 1010 cm), and in

GR mass is as well (G{c´2 “ 7.425ˆ 10´29 cm g´1).

1.4 Spacetime diagrams

1.5 Construction of the coordinates used by another observer

1.6 Invariance of the interval

For two nearby events, we can define the invariant interval, defining a 4D Minskowski spacetime:

ds2
“ ´pcdtq2 ` dx2

` dy2
` dz2 ,

or when we set c ” 1:

ds2
“ ´dt2 ` dx2

` dy2
` dz2 . (Schutz 1.1)

This notation can be simplified be defining

ηµν “ diagp´1, 1, 1, 1q “

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

; ds2
“

3
ÿ

µ“0

3
ÿ

ν“0

ηµν dxµ dxν

When we want to find ds̄2, we can consider the fact that each of its components, dx̄α, is a linear combination

of the components of ds2,

dx̄α “
3
ÿ

β“0

aαβx
β .

Now, when we consider the square of dx̄α, the cross terms make it a quadratic function. Since the sum of

four quadratics (the four dx̄α’s) is also a quadratic, we can write ds̄2 as

ds̄ “
3
ÿ

α“0

3
ÿ

β“0

Mαβpdx
αqpdxβq (Schutz 1.2)
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If are talking about light, ds2
“ 0, and so we can say

ds2
“ 0 “ ´dt2 ` dr2

ùñ dt “ dr

Now by looking at Exercise 8 in Section 1.14, we see that

ds̄2
“M00pdrq

2

` 2

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

`

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj , (Schutz 1.3)

where

M0i “ 0 (Schutz 1.4a)

and

Mij “ ´pM00qδij , (Schutz 1.4b)

where δij is the Kronecker delta.

1.7 Invariant hyperbolae

1.8 Particularly important results

1.9 The Lorentz transformation

1.10 The velocity-composition law

1.11 Paradoxes and physical intuition

1.12 Further reading

1.13 Appendix: The twin ‘paradox’ dissected

Consider two twins, Joe and Ed. Joe goes off in a straight line traveling at a speed of p24{25qc for 7 years,

as measured on his clock, then instantaneously reverses and returns at half the speed. Ed remains at home.

When they return, what is the difference in ages between Joe and Ed?

τ1 “ 7 yr. t1 “ τ1γ1, where γ1 “

”

1´
`

24
25

˘2
ı´1{2

. So t1 “ 25 yr.

t2 “ 2t1 “ 50 yr.
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τ2 “ t2γ
´1
2 , where γ1 “

”

1´
`

12
25

˘2
ı´1{2

. So τ2 “ 2
?

481yr « 44 yr. Finally, τ “ τ1 ` τ2 « 51 yr, and

t “ t1 ` t2 “ 75 yr, so Ed ages t´ τ « 24 years more than Joe.

1.14 Exercises

1 Convert the following to units in which c “ 1, expressing everything in terms of m and kg.

(Note that c “ 1 ùñ 1 « 3ˆ 108 m s´1 « p3ˆ 108q´1m´1 s

(a) 10 J

10 J “ 10 N m “ 10 kg m2 s´2 « 10 kg m2 s´2 ¨ pp3ˆ 108q´1m´1 sq2

« 10 kgp3ˆ 108q´2 “ 10 kg

ˆ

1

9
ˆ 10´16

˙

« 1.11ˆ 10´16 kg

(b) 100 W

100 W “ 100 kg m2 s´3 « 100 kg m2 s´3 ¨ pp3ˆ 108q´1m´1 sq3

« 100 kg m´1p3´3 ˆ 10´24q “
100

27
ˆ 10´24kg m´1 « 3.7ˆ 10´24 kg m´1

2 Convert the following from natural units (c “ 1) to SI units:

(a) A velocity v “ 10´2.

v “ 10´2 “ 10´2c “ 10´23ˆ 108 m s´1 “ 3ˆ 106 m s´1

(b) Pressure P “ 1019kg m´3.

P “ 1019kg m´3 « 1019kg m´3p3ˆ 108 m s´1q2

« 1019kg m´3p9ˆ 1016 m2 s´2q “ 9ˆ 1035 N m2

3 Draw the t and x axes of the spacetime coordinates of an observer O and then draw:

(a) The world line of O’s clock at x “ 1 m.

4 Write out all the terms of the following sums, substituting the coordinate names pt, x, y, zq for px0, x1, x2, x3q:

(a)
ř3
α“0 Vα dxα “ V0 dt` V1 dx` V2 dy ` V3 dz.

(b)
ř3
i“1pdx

iq2 “ dx2
` dy2

` dz2
“ dr2.

5

(a) Use the spacetime diagram of an observer O to describe the following experiment performed by O. Two

bursts of particles of speed v “ 0.5 are emitted from x “ 0 at t “ ´2 m, one traveling in the `x direction

and the other in the ´x direction. These encounter detectors located at x “ ˘2 m. After a delay of 0.5 m of

time, the detectors send signals back to x “ 0 at speed v “ 0.75.

See figure below
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−10 −5 0 5 10
x(m)

−10

−5

0

5

10
t(
m
)

(a)
(b)
(c)
(d)
(e)
(g)
(h)
(i)

Exercise 3

(b) The signals arrive back at x “ 0 at the same event. (Make sure your spacetime diagram shows this!) From

this the experimenter concludes that the particle detectors did indeed send out their signals simultaneously,

since he knows they are equal distances from x “ 0. Explain why this conclusion is valid.

Assuming he knows the signals traveled with equal speeds, and the detectors are an equal distance away,

then they must have been emitted simultaneously, in order for them to arrive at x “ 0 simultaneously.

(c) A second observer Ō moves with speed v “ 0.75 in the ´x direction relative to O. Draw the spacetime

diagram of Ō and in it depict the experiment performed by O. Does Ō conclude that particle detectors sent

out their signals simultaneously? If not, which signal was sent first.

See the diagram below. On it, I have drawn lines t̄left and t̄right (note that they are parallel to the x̄ axis).

As you can see from the plot, the left emission occurs before the right emission.

(d)

Using O, the distance is

∆s2 “ ∆x2 “ 16 m2.
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Using Ō, we first need to find x̄ta,bu and t̄ta,bu. We use the Lorentz transformation to do this.

t̄ “ γpt´ vxq

x̄ “ γpx´ vtq

Using this, we find

t̄a “
16
?

7

7
t̄b “

4
?

7

7

x̄a “
´31

?
7

14
x̄b “

?
7

14

This gives us a distance of

∆s̄2 “ ´p∆t̄q2 ` p∆x̄q2 “ 16 m2,

which is of course what we expect.

−10 −5 0 5 10
x(m)

−10

−5

0

5

10

t(
m
)

t̄

x̄

d1

d2
γout

γin

t̄left

t̄right

Exercise 5

6 Show that Equation (Schutz 1.2) contains only Mαβ`Mβα when α ‰ β, not Mαβ and Mβα independently.

Argue that this enables us to set Mαβ “Mβα without loss of generality.
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When we expand the summation in (Schutz 1.2), there is no point where

ds̄2
“ . . .`Mααpdx

αq2 `Mααpdx
αq2 ` . . .

occurs, because a double summation only contains Mαα once. If it did, we could absorb the two Mαβ terms

into a single one. Therefore we can assert the first point.

Now we consider the second point. If we expand the summation, assuming now that an Mαβ and Mβα term

only occur when α ‰ β, then we see

ds̄2
“ . . .`Mαβpdx

αqpdxβq `Mβαpdx
βqpdxαq ` . . .

“ . . .` pMαβ `Mβαq

”

pdxαqpdxβq
ı

` . . .

“ . . .`X
”

pdxαqpdxβq
ı

` . . . .

Now, what really matters in this summation is the value of X “ Mαβ `Mβα, not the individual values of

Mαβ and Mβα. Therefore we can choose, without loss of generality, Mαβ “ Mβα “ X{2, thereby asserting

the second point.

7 In the discussion leading up to Equation (Schutz 1.2), assume that the coordinates of Ō are given as the

following linear combinations of those O:

t̄ “ αt` βx,

x̄ “ µt` νx,

ȳ “ ay,

z̄ “ bz,

where α, β, µ, ν, a, and b may be functions of the velocity ~v of Ō relative to O, but they do not depend on

the coordinates. Find the values of Mαβ of Equation (Schutz 1.2).

ds̄2
“ ´pdt̄q2 ` pdx̄q2 ` pdȳq2 ` pdz̄q2

“ ´pα dt` β dxq2 ` pµdt` ν dxq2 ` pa dyq2 ` pbdzq2

“ ´α2 dt2 ´ αβ dtdx´ β2 dx2
` µ2 dt2 ` µν dtdx` ν2 dx2

` a2 dy2
` b2 dz2

“ pµ2 ´ α2qdt2 ` pµν ´ αβqdtdx` pν2 ´ β2qdx2
` a2 dy2

` b2 dz2

M00 “ µ2 ´ α2

M01 “M10 “
µν ´ αβ

2

M11 “ ν2 ´ β2

M22 “ a2

M33 “ b2,
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and all other Mαβ “ 0.

8

(a) Derive Equation (Schutz 1.3) from (Schutz 1.2) for general Mαβ .

Equation (Schutz 1.3) is just an expansion of the summation in (Schutz 1.2).

We start by taking out the dt2 term, which corresponds to α “ β “ 0, which gives us

ds̄2
“M00pdtq

2 ` . . . ,

now we use the equivalence of dt and dr to make the substitution

ds̄2
“M00pdrq

2 ` . . . .

For the middle terms, we use the fact that Mαβ “ Mβα, and look at only the terms where one of α and β

is zero. The symmetry means we can write M0i “ Mi0, and pull out a 2 because there are twice as many

terms, giving us

ds̄2
“M00pdrq

2

` 2

¨

˝

3
ÿ

i“1

M0ipdx
iqpdtq

˛

‚

` . . . .

Now we use the equivalence of dt and dr once again, and pull the term out of the sum, giving us

ds̄2
“M00pdrq

2

` 2

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

` . . . .

Finally, we simply include the terms which have not yet been accounted for, which are all the spacial-only

terms, which arrives us back at Equation (Schutz 1.3):

ds̄2
“M00pdrq

2

` 2

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

`

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj .

(b) Since ds̄2
“ 0 in Equation (Schutz 1.3), for any dxi, replace dxi with ´dxi, and subtract that result
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from the original equation. This will establish that M0i “ 0.

ds̄2
“M00pdrq

2

´ 2

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

`

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj .

ds̄2
´ ds̄2

“ 0 “��
���0M00pdrq

2

` 4

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚dr

`
���

���
���

0
3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj .

0 “ �4

¨

˝

3
ÿ

i“1

M0i dxi

˛

‚��dr

Now there are two possibilities. In one case, dxi ” 0, but that is a trivial solution and in general is not true.

The other case is that M0i ” 0, which means we can simplify Equation (Schutz 1.3) to

ds̄2
“M00pdrq

2

`

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj .

(c) Use the result of part (b) with ds̄2
“ 0 to establish Equation (Schutz 1.4b).

ds̄2
“ 0 “M00pdrq

2 `

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj

ùñ ´M00pdrq
2 “

3
ÿ

i“1

3
ÿ

j“1

Mij dxi dxj ,

now if we expand pdrq2, we see that there can only be non-zero Mij when i “ j, and so

´M00

´

pdx2
q ` pdy2

q ` pdz2
q

¯

“

3
ÿ

i“1

Miipdx
iq2

ùñ ´pM00qδij “Mij ,

which is simply Equation (Schutz 1.4b).

9 Explain why the line PL in Figure 1.7 is drawn in the manner described in the text.

10 For the pairs of events whose coordinates pt, x, y, zq in some frame are given below, classify their separa-

tions as timelike, spacelike, or null.
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(a) p0, 0, 0, 0q and p´1, 1, 0, 0q:

ds2
“ ´p0` 1q2 ` p0´ 1q2 ` p0´ 0q2 ` p0´ 0q2 “ ´1` 1` 0` 0 “ 0 ùñ null

(b) p1, 1,´1, 0q and p´1, 1, 0, 2q:

ds2
“ ´p1` 1q2 ` p1´ 1q2 ` p´1´ 0q2 ` p0´ 2q2 “ ´4` 0` 1` 4 “ 1 ùñ spacelike

(c) p6, 0, 1, 0q and p5, 0, 1, 0q:

ds2
“ ´p6´ 5q2 ` p0´ 0q2 ` p1´ 1q2 ` p0´ 0q2 “ ´1` 0` 0` 0 “ ´1 ùñ timelike

(d) p´1, 1,´1, 1q and p4, 1,´1, 6q:

ds2
“ ´p´1´ 4q2 ` p1´ 1q2 ` p´1` 1q2 ` p1´ 6q2 “ ´25` 0` 0` 25 “ 0 ùñ null

11 Show that the hyperbolae ´t2 ` x2 “ a2 and ´t2 ` x2 “ ´b2 are asymptotic to the lines t “ ˘x,

regardless of a and b.

We will generalize a and ´b with a new constant, α P R, and so we have: ´t2 ` x2 “ α2. Now if we solve

for t, we get t “ ˘
?
x2 ´ α2.

Now take the limit of t as xÑ8 (or ´8, they are equivalent since x is real and squared), which gives us:

lim
xÑ8

t “ lim
xÑ8

˘
a

x2 ´ α2 “ ˘
?
x2 “ ˘x.

Note that we dropped the α2 term in the limit, as it was being subtracted from a number approaching

infinity, and was therefore negligible.

12

(a) Use the fact that the tangent to the hyperbola DB in Figure 1.14 is the line of simultaneity for Ō to

show that the time interval AE is shorter than the time recorded on Ō’s clock as it moved from A to B.

If we look at the figure, we see that AD and AB lie along the same hyperbola. This means that when O

measures dt “ AD, and Ō measures dt̄ “ AB, the two measurements are the same. Since dt “ AE is clearly

shorter than dt “ AD, then dt “ AD ă dt̄ “ AB.

(b) Calculate that

pds2
qAC “ p1´ v

2qpds2
qAB

pds2
qAC “ ´pdtq

2
AC

pds2
qAB “ pds̄

2
qAB

“ ´pdt̄q2AB

“ ´pγpdt´ v dxqq2 “ ´pγpdt´ v ¨ 0qq2 “ ´pγ dtq2 “ γ2r´pdtq2s

“ γ2pds2
qAC “

pds2
qAC

1´ v2
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ùñ pds2
qAC “ p1´ v

2qpds2
qAB

13 The Half-life of the elementary particle called the π-meson (or pion) is 2.5ˆ 10´8 s when the pion is at

rest relative to the observer measuring its decay time. Show, by the principle of relativity, that pions moving

at speed v “ 0.999 must have a half-life of 5.6ˆ 10´7 s, as measured by an observer at rest.

dt “ γ dt̄ “
2.5ˆ 10´8 s
?

1´ 0.9992
« 5.59ˆ 10´7 s

14 Suppose the velocity v of Ō relative to O is small, |v| ! 1. Show that the time dilation, Lorentz

contraction, and velocity-addition formulae can be approximated by respectively:

(a) dt « p1` 1
2v

2qdt̄

γ “ p1´ v2q´1{2 “

8
ÿ

k“0

ˆ

´1{2

k

˙

xk “ 1` p´1{2qp´v2q `
p´1{2qp´1{2´ 1q

2!
p´v2q2 ` . . . « 1`

1

2
v2

dt “ γ dt̄ «

ˆ

1`
1

2
v2

˙

dt̄

(b) dx « p1´ 1
2v

2qdx̄

γ´1 “ p1´ v2q1{2 “

8
ÿ

k“0

ˆ

1{2

k

˙

xk “ 1` p1{2qp´v2q `
p1{2qp1{2´ 1q

2!
p´v2q2 ` . . . « 1´

1

2
v2

dx “ γ´1 dx̄ «

ˆ

1´
1

2
v2

˙

dx̄

(c) W 1 «W ` v ´WvpW ` vq (with |W | ! 1 as well)

W 1 “
W ` v

1`Wv
“ pW ` vqp1`Wvq´1

p1`Wvq´1 “

8
ÿ

k“0

ˆ

´1

k

˙

pWvqk “ 1´Wv `
1

2
¨ 1p1` 1qpWvq2 ´

1

6
¨ 1p1` 1qp1` 2qpWvq3 ` . . .

« 1´Wv ` pWvq2

W 1 « pW ` vqp1´Wv ` pWvq2q “W ` v ´WvpW ` vq ` pWvq2pW ` vq

«W ` v ´WvpW ` vq

What are the relative errors in these approximations when |v| “W “ 0.1?

TODO

15 Suppose that the velocity v of Ō relative to O is nearly that of light, |v| “ 1´ ε, 0 ă ε ! 1. Show that

the same formulae of Exercise 14 become

(a) dt « dt̄ {
?

2ε
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v “ 1´ ε ùñ v2 “ p1´ εq2 “ 1´ 2ε` ε2

ùñ 1´ v2 “ 1´ p1´ 2ε` ε2q “ 2ε´ ε2 “ 2ε

ˆ

1´
ε

2

˙

γ “ p1´ v2q´1{2 “

˜

2ε

ˆ

1´
ε

2

˙

¸´1{2

“
1
?

2ε

ˆ

1´
ε

2

˙´1{2

«
1
?

2ε

dt “ γ dt̄ «
dt̄
?

2ε

(b) dx « dx̄
?

2ε

v “ 1´ ε ùñ v2 “ p1´ εq2 “ 1´ 2ε` ε2

ùñ 1´ v2 “ 1´ p1´ 2ε` ε2q “ 2ε´ ε2 “ 2ε

ˆ

1´
ε

2

˙

γ´1{2 “ p1´ v2q1{2 “

˜

2ε

ˆ

1´
ε

2

˙

¸1{2

“
?

2ε

ˆ

1´
ε

2

˙1{2

«
?

2ε

dx “ γ´1 dx̄ « dt̄
?

2ε

(c) W 1 « 1´ εp1´W q{p1`W q

TODO

What are the relative errors on these approximations when ε “ 0.1 and W “ 0.9?

TODO

16 Use the Lorentz transformation, Equation 1.12, to derive (a) the time dilation, and (b) the Lorentz

contraction formulae. Do this by identifying pairs of events where the separations (in time or space) are

to be compared, and then using the Lorentz transformation to accomplish the algebra that the invariant

hyperb b olae had been used for in the text.

(a) To derive the time dilation formula, we choose two events that occur at x “ c, and times t1 and t2. Thus,

from O’s frame, the time elapsed between these two events is ∆t “ t2 ´ t1, and the distance between them

is ∆x “ 0. Another observer, Ō, moves with some velocity v relative to O. As it passes through the lines

t “ t1 and t “ t2, its clock moves forward by a time ∆τ “ t̄2 ´ t̄1. We now use the Lorentz transformation

to write ∆τ in terms of O’s coordinates.

∆τ “ t̄2 ´ t̄1 “ γ
“

pt2 ´ vx2q ´ pt1 ´ vx1q
‰

“ γ
“

pt2 ´ t1q ` pvx1 ´ vx2q
‰

“ γr∆t` v∆xs “ γr∆t` v ¨ 0s

“ γ∆t

and thus we have arrived at the formula for time dilation.

(b) To derive the Lorentz contraction formula, we take a slightly different approach. In the O frame, a stick
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lies parallel to x, such that its length ` “ x2 ´ x1. In this frame, the world lines of the two ends of the stick

form vertical lines. Another observer, Ō, moves with a velocity v, relative to O. Two events, A and B occur

on either end of the stick, such that Ō observes the two events to be simultaneous. Thus, from the Ō frame,

the events are located a distance ∆x̄ “ ¯̀ apart, and ∆t̄ “ 0. However, from the O frame, the events occur

a distance ∆x “ ` apart, and a time separation ∆t ‰ 0.

` “ x2 ´ x1 “ γ
“

px̄2 ´ vt̄2q ´ px̄1 ´ vt̄1q
‰

“ γ
“

px̄2 ´ x̄1q ` vpt̄1 ´ t̄2q
‰

“ γ ¯̀

ùñ ¯̀“
`

γ

17 A lightweight pole, 20 m long, lies on the ground next to a barn 15 m long. An Olympic athlete picks up

the pole, carries it far away, and runs with it toward the end of the barn at a speed 0.8. His friend remains

at rest, standing by the door of the barn. Attempt all parts of this question, even if you can’t answer some.

(a) How long does the friend measure the pole to be, as it approaches the barn?

We use the Lorentz contraction equation to find the length the friend measures.

¯̀“ `{γ “ `
a

1´ v2 “ 20 m
a

1´ 0.82 “ 12 m

(b) The barn door is initially open and, immediately after the runner and pole are entirely inside the barn,

the friend shuts the door. How long after the door is shut does the front of the pole hit the other end of the

barn, as measured by the friend? Compute the interval between the events of shutting the door and hitting

the wall. Is it spacelike, timelike, or null?

From the runner’s point of view, we must consider the length contraction of the barn

(c) In the reference frame of the runner, what is the length of the barn and the pole?

(d) Does the runner believe that the pole is entirely inside the barn when its front hits the end of the barn?

Can you explain why?

(e) After the collision, the pole and runner come to rest relative to the barn. From the friend’s point of view,

the 20 m pole is now inside a 15 m barn, since the barn door was shut before the pole stopped. How is this

possible? Alternatively, from the runner’s point of view, the collision should have stopped the pole before

the door closed, so the door could not be closed at all. Was or was not the door closed with the pole inside?

(f) Draw a spacetime diagram from the friend’s point of view and use it to illustrate and justify all your

conclusions.

18

(a) The Einstein velocity-addition law, Equation 1.13, has a simpler form if we introduce the concept of the

velocity parameter u, defined by the equation

v “ tanhu.
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Notice that for ´8 ă u ă 8, the velocity is confined to the acceptable limits ´1 ă v ă 1. Show that if

v “ tanhu

and

w “ tanhU,

then Equation 1.13 implies

w1 “ tanhpu` Uq.

This means that velocity parameters add linearly.

There exists an identity:

tanhpx` yq “
tanhpxq ` tanhpyq

1` tanhpxq tanhpyq
.

If we simply use x “ u and y “ U , then we arrive at

tanhpu` Uq “
tanhpuq ` tanhpUq

1` tanhpuq tanhpUq
“ w1

(b) Use this to solve the following problem. A star measures a second star to be moving away at speed

v “ 0.9. The second star measures a third to be receding in the same direction at 0.9. Similarly, the third

measures a fourth, and so on, up to some large number N of stars. What is the velocity of the Nth star

relative to the first? Give an exact answer and an approximation useful for large N .

Let wN be the velocity of the Nth star relative to the original star, which we will call star 0. We will use

an induction proof to find an expression for wN . The base case is trivial, w0 “ 0, as the star does not move

relative to itself. For the next case, w1 “ v, we still aren’t really doing velocity addition, so we will skip to

the w2 case, where things get interesting, though we will later show that the general expression holds for w0

and w1.

For w2, we simply use the Einstein velocity-addition law:

w2 “ tanhpu` Uq “ tanh
´

tanh´1 v ` tanh´1 w1
¯

“ tanh
´

2 tanh´1 v
¯

.

Now I will prove that this is one instance of a general expression, that wN “ tanh
´

N tanh´1 v
¯

.

wN “ tanh
´

N tanh´1 v
¯

ùñ tanh´1 wN “ N tanh´1 v

ùñ tanh´1 wN ` tanh´1 v “ N tanh´1 v ` tanh´1 v

ùñ tanh´1 wN ` tanh´1 v “ pN ` 1q tanh´1 v

ùñ tanh
´

tanh´1 wN ` tanh´1 v
¯

“ tanh
´

pN ` 1q tanh´1 v
¯

ùñ wN`1 “ tanh
´

pN ` 1q tanh´1 v
¯

.
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If you can believe the last step, then this is proof that it works for all N . The last step is saying that, if we

have a star N , moving away from star 0 at a speed wN , and another star N ` 1, moving away from star N

at a speed v, then star N ` 1 as observed from star 0 is given by the Einstein velocity-addition law, meaning

we can rewrite that expression as wN`1.

Now I’d like to go back and show that this works for N “ 0 and N “ 1. For N “ 1, we get

w1 “ tanh
´

1 tanh´1 v
¯

“ v,

which is what we would expect, and for N “ 0, we get

w0 “ tanh
´

0 tanh´1 v
¯

“ 0,

which we also expect. So the general expression,

wN “ tanh
´

N tanh´1 v
¯

,

holds true for all non-negative integers N . We can also write this more elegantly as

wN “ tanhpNuq.

Now we want to consider the behaviour at large N . We first write tanh in its exponential form, as

wN “
1´ expp´2Nuq

1` expp´2Nuq
.

When N is very large, then the exponential in the bottom term goes to zero, allowing us to rewrite it as

wN « 1´ expp´2Nuq.

We can go a step further. Since v “ 0.9, u « 1.47, which we can neglect for large N , and so we finally arrive

at

wN « 1´ expp´2Nq.

19

(a) Using the velocity parameter (u) introduced in Exercise 18, show that the Lorentz transformation equa-

tions, Equation 1.12, can be put in the form

t̄ “ t coshu´ x sinhu ȳ “ y

x̄ “ ´t sinhu` x coshu z̄ “ z

We start by putting γ in terms of u.

γ “ p1´ v2q´1{2 “ p1´ tanh2 uq´1{2 “
1

sechu
“ coshu.
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Now we can substitute this into the Lorentz transformation equations

t̄ “ γpt´ vxq “ coshupt´ x tanhuq “ t coshu´ x sinhu

x̄ “ γpx´ vtq “ coshupx´ t tanhuq “ x coshu´ t sinhu

(b) Use the identity cosh2 u´ sinh2 u “ 1 to demonstrate the invariance of the interval from these equations.

ds2
“ ´dt2 ` dx2

` dy2
` dz2

ds̄2
“ ´pdt coshu´ dx sinhuq

2
` pdx coshu´ dt sinhuq

2
` dy2

` dz2

“ ´

´

dt2 cosh2 u´((((
((((dx dt sinhu coshu` dx2 sinh2 u

¯

`

´

dx2 cosh2 u´(((
((((

(
dtdx sinhu coshu` dt2 sinh2 u

¯

` dy2
` dz2

“ ´dt2

���
���

���´

cosh2 u´ sinh2 u
¯

` dx2

���
���

���´

cosh2 u´ sinh2 u
¯

` dy2
` dz2

“ ds2

(c) Draw as many parallels as you can between the geometry of spacetime and ordinary two-dimensional

Euclidean geometry, where the coordinate transformation analogous to the Lorentz transformation is

x̄ “ `x cos θ ` y sin θ,

ȳ “ ´x sin θ ` y cos θ.

What is the analog of the interval? Of the invariant hyperbolae?

The analog of the interval would be

dr̄2
“ dx̄2

` dȳ2
“ pdx cos θ ` dy sin θq2 ` pdy cos θ ´ dx sin θq2`

“ dx2 cos2 θ `((((
((((2 dx dy sin θ cos θ ` dy2 sin2 θ

` dy2 cos2 θ ´((((
((((2 dx dy sin θ cos θ ` dx2 sin2 θ

“ dx2
psin2 θ ` cos2 θq ` dy2

psin2 θ ` cos2 θq

“ dx2
` dy2

The analog of the invariant hyperbola would be the invariant circle, as x̄ and ȳ are both equations of a circle.

20 Write the Lorentz transformation equations in matrix form.

t̄ “ γpt´ vxq t̄ “ γt´ γvx` 0y ` 0z

x̄ “ γpx´ vtq x̄ “ ´γvt` γx` 0y ` 0z

ȳ “ y ȳ “ y

z̄ “ z z̄ “ z
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¨

˚

˚

˚

˚

˚

˚

˝

t̄

x̄

ȳ

z̄

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

γ ´γv 0 0

´γv γ 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

t

x

y

z

˛

‹

‹

‹

‹

‹

‹

‚

21

(a) Show that if the two events are timelike separated, there is a Lorentz frame in which they occur at the

same point, i.e. at the same spatial coordinate values.

If the two events are timelike separated, then it must be possible to have an object with a worldline which

crosses the two points, as it is inside the light cone. If such an object exists, then we can draw a Lorentz

frame for it, so its time axis, t̄ is that line, meaning x̄ “ 0 for both events.

(b) Similarly, if the two events are spacelike separated, there is a Lorentz frame in which they occur simul-

taneously.

If the two events are spacelike separated, then it must be possible to draw a coordinate frame where x̄ has

slope v in O’s frame. This means that t̄ “ 0 for both events, and so they are simultaneous.
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Chapter 2

Vector analysis in special relativity

2.1 Definition of a vector

2.2 Vector algebra

2.3 The four-velocity

An object’s four velocity, denoted ~U , is the vector tangent to its world line, with unit length. This means it

extends one unit in time, and zero in space, so it is timelike.

For an accelerated particle (which we have not considered up to now), we may not be able to define an

inertial frame, but we can define a momentarily comoving reference frame (MCRF) which, as the

name suggests, moves with the same velocity as the observer for an infinitesimal period of time. We can

therefore construct a continuous sequence of MCRFs for any object. If an object has MCRF O, then its

four-velocity is defined to be the basis vector ~e0.

2.4 The four-momentum

Analogous to the three-momentum, we define the four-momentum to be

~p “ m~U. (Schutz 2.19)

It has components

~pÑ
O
pE, p1, p2, p3q. (Schutz 2.20)

Calling p0 “E” is no accident, it is in fact the energy. There is an interesting consequence to this: since

vectors are invariant with respect to reference frame, but vector components are not, this means that the

four-momentum does not change in different reference frames, but the energy does. One example would be

23
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the doppler effect, which causes the color (or energy) of a photon to shift depending on the radial velocity

of the source and observer.

2.5 Scalar product

~A ¨ ~B “ ´pA0B0q ` pA1B1q ` pA2B2q ` pA3B3q

2.6 Applications

2.7 Photons

~x ¨ ~x “ 0, so we cannot define ~U for photons. We can, however, define ~p. Since ~p ¨ ~p “ ´m2, and photons are

massless, we have ~p ¨ ~p “ 0.

2.8 Further reading

2.9 Exercises

2 Identify the free and dummy indices in the following equations, and write equivalent expressions with

different indices. Also, write how many equations are represented by each expression.

Note, I will express the set of free indices by F and the set of dummy indices as D, and I will use the original

index names.

(a) AαBβ “ 5 ùñ AβBα “ 5 (16 equations, F “ tα, βu, D “ Ø)

(b) Aµ̄ “ Λµ̄νA
ν ùñ Aν̄ “ Λν̄µA

µ (4 equations, F “ tµ̄u, D “ tνu).

(c) TαµλAµC
γ

λ “ Dγα ùñ T ηφθAφC
ζ
θ “ Dζη (16 equations, F “ tα, γu, D “ tµ, λu)

(d) Rµν ´
1
2gµν “ Gµν ùñ Rχε ´

1
2gχε “ Gχε (16 equations, F “ tµ, νu, D “ Ø)

4 Given vectors ~AÑO p5,´1, 0, 1q and ~B ÑO p´2, 1, 1,´6q, find the components in O of

(a) ´6 ~AÑO p´30, 6, 0,´6q

(b) 3 ~A` ~B ÑO p13,´2, 1,´3q

(c) ´6 ~A` 3 ~B ÑO p´36, 9, 3,´24q

6 Draw a spacetime diagram from O’s reference frame. There are two other frames, Ō and ¯̄O, which are each

moving with velocity 0.6 in the `x direction from each respective frame. Plot each frame’s basis vectors, as

observed by O.
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Figure 2.1: Exercise 6

See Figure 2.1.

9 Prove, by writing out all the terms that

3
ÿ

ᾱ“0

¨

˝

3
ÿ

β“0

ΛᾱβA
β~eᾱ

˛

‚“

3
ÿ

β“0

¨

˝

3
ÿ

ᾱ“0

ΛᾱβA
β~eᾱ

˛

‚

3
ÿ

ᾱ“0

¨

˝

3
ÿ

β“0

ΛᾱβA
β~eᾱ

˛

‚“

3
ÿ

ᾱ“0

´

Λᾱ0A
0~eᾱ ` Λᾱ1A

1~eᾱ ` Λᾱ2A
2~eᾱ ` Λᾱ3A

3~eᾱ

¯

“ Λ0̄
0A

0~e0̄ ` Λ0̄
1A

1~e0̄ ` Λ0̄
2A

2~e0̄ ` Λ0̄
3A

3~e0̄

` Λ1̄
0A

0~e1̄ ` Λ1̄
1A

1~e1̄ ` Λ1̄
2A

2~e1̄ ` Λ1̄
3A

3~e1̄

` Λ2̄
0A

0~e2̄ ` Λ2̄
1A

1~e2̄ ` Λ2̄
2A

2~e2̄ ` Λ2̄
3A

3~e2̄

` Λ3̄
0A

0~e3̄ ` Λ3̄
1A

1~e3̄ ` Λ3̄
2A

2~e3̄ ` Λ3̄
3A

3~e3̄

“ Λ0̄
0A

0~e0̄ ` Λ1̄
0A

0~e1̄ ` Λ2̄
0A

0~e2̄ ` Λ3̄
0A

0~e3̄

` Λ0̄
1A

1~e0̄ ` Λ1̄
1A

1~e1̄ ` Λ2̄
1A

1~e2̄ ` Λ3̄
1A

1~e3̄

` Λ0̄
2A

2~e0̄ ` Λ1̄
2A

2~e1̄ ` Λ2̄
2A

2~e2̄ ` Λ3̄
2A

2~e3̄
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` Λ0̄
3A

3~e0̄ ` Λ1̄
3A

3~e1̄ ` Λ2̄
3A

3~e2̄ ` Λ3̄
3A

3~e3̄

“

3
ÿ

β“0

´

Λ0̄
βA

β~e0̄ ` Λ1̄
βA

β~e1̄ ` Λ2̄
βA

β~e2̄ ` Λ3̄
βA

β~e3̄

¯

“

3
ÿ

β“0

¨

˝

3
ÿ

ᾱ“0

ΛᾱβA
β~eᾱ

˛

‚

11 Let Λᾱβ be the matrix of the Lorentz transformation from O to Ō, given in Equation 1.12. Let ~A be an

arbitrary vector with components pA0, A1, A2, A3q in frame O.

(a) Write down the matrix of Λνµ̄p´vq.

Intuitively, it should appear the same as Λᾱβ , but with the negative signs removed. More rigorously,

it is given by the matrix inverse of Λᾱβ , as their product should be the identity matrix. I have used a

computer algebra system (Wolfram Alpha) to take the inverse of this matrix symbolically, confirming

my suspicion:

Λνµ̄p´vq “

¨

˚

˚

˚

˚

˚

˚

˝

γ vγ 0 0

vγ γ 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

(b) Find Aᾱ for all ᾱ.

Aᾱ “ ΛᾱβA
β

A0̄ “ γpA0 ´ vA1q

A1̄ “ γpA1 ´ vA0q

A2̄ “ A2

A3̄ “ A3

(c) Verify Equation 2.18 by performing the sum for all values of ν and α.

To simplify things, I do this via matrix multiplication

ΛᾱβpvqΛ
ν
µ̄p´vq “

¨

˚

˚

˚

˚

˚

˚

˝

γ2 ´ v2γ2 vγ2 ´ vγ2 0 0

vγ2 ´ vγ2 γ2 ´ v2γ2 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚
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“

¨

˚

˚

˚

˚

˚

˚

˝

γ2p1´ v2q 0 0 0

0 γ2p1´ v2q 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

“ δνα

(d) Write down the Lorentz transformation matrix from Ō to O, justifying each term.

It should just be Λνµ̄p´vq. I’m not sure what else to say at this point.

(e) Using the result from part (d), find Aβ from Aᾱ. How does this relate to Equation 2.18?

ΛβᾱA
ᾱ “

¨

˚

˚

˚

˚

˚

˚

˝

γ vγ 0 0

vγ γ 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

γpA0 ´ vA1q

γpA1 ´ vA0q

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

γ2pA0 ´ vA1q ` vγ2pA1 ´ vA0q ` 0` 0

vγ2pA0 ´ vA1q ` γ2pA1 ´ vA0q ` 0` 0

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

A0pγ2 ´ v2γ2q `A1pvγ2 ´ vγ2q

A0pvγ2 ´ v2γ2q `A1pγ2 ´ vγ2q

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

A0pγ2 ´ v2γ2q

A1pγ2 ´ v2γ2q

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

A0

A1

A2

A3

˛

‹

‹

‹

‹

‹

‹

‚

“ Aβ

Since Aᾱ “ Λᾱβpvq, this goes to show that Λν
β̄
p´vqΛβ̄αp´vqA

λ “ Aλ ùñ Λν
β̄
p´vqΛβ̄αp´vq “ δνα .

(f) Verify in the same manner as (c) that

Λνβ̄pvqΛ
ᾱ
νp´vq “ δᾱβ̄

My matrix multiplication approach will just give me the same result as before. Perhaps another approach

was intended?

(g) Establish that

~eα “ Λβ̄α~eβ̄ “ Λβ̄αΛνβ̄~eν “ δνα~eν

Aβ̄ “ Λβ̄αA
α “ Λβ̄αΛαµ̄A

µ̄ “ δβ̄µ̄A
µ̄
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14 The following matrix gives a Lorentz transformation from O to Ō:

¨

˚

˚

˚

˚

˚

˚

˝

1.25 0 0 0.75

0 1 0 0

0 0 1 0

0.75 0 0 1.25

˛

‹

‹

‹

‹

‹

‹

‚

(a) What is the velocity of Ō relative to O?

This would correspond to a Lorentz boost along the z-axis, meaning

Λᾱβpvq “

¨

˚

˚

˚

˚

˚

˚

˝

γ 0 0 ´vγ

0 1 0 0

0 0 1 0

´vγ 0 0 γ

˛

‹

‹

‹

‹

‹

‹

‚

,

and thus we have γ “ 1.25 and ´vγ “ 0.75. Solving for v, we get

´vγ “
3

4
ùñ v “ ´

3

4γ
“ ´

3 ¨ 4

4 ¨ 5
“ ´

3

5
.

So Ō is moving with speed 0.6 relative to the ´z-axis of O.

(b) What is the inverse matrix to the given one?

Numerically, it comes out to be
¨

˚

˚

˚

˚

˚

˚

˝

1.25 0 0 ´0.75

0 1 0 0

0 0 1 0

´0.75 0 0 1.25

˛

‹

‹

‹

‹

‹

‹

‚

,

which makes sense, when you consider that the inverse matrix should be a Lorentz transformation with

the velocity negated.

(c) Find the components in O of ~AÑŌ p1, 2, 0, 0q.

~AÑ
O

¨

˚

˚

˚

˚

˚

˚

˝

1.25 0 0 ´0.75

0 1 0 0

0 0 1 0

´0.75 0 0 1.25

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1

2

0

0

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

1.25

2

0

´0.75

˛

‹

‹

‹

‹

‹

‹

‚

15

(a) Compute the four-velocity components in O of a particle whose speed is v in the `x-direction relative
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to O, using the Lorentz transformation.

~U “ ~e0̄

Uα “ Λαβ̄p~e0̄q
β̄ “ Λα0̄ ,

U0 “ γ

U1 “ vγ

U2 “ U3 “ 0

(b) Generalize to arbitrary velocities v, where |v| ă 1.

Λαβ̄pvq “

¨

˚

˚

˚

˚

˚

˚

˝

γ γvx γvy γvz

γvx γ 0 0

γvy 0 γ 0

γvz 0 0 γ

˛

‹

‹

‹

‹

‹

‹

‚

.

U0 “ γ U1 “ γvx U2 “ γvy U3 “ γvz

(c) Use this result to express v as a function of the components tUαu.

v “ vx~e1 ` vy~e2 ` vz~e3

vi “
U i

γ

v “
1

γ
U i~ei

(d) Find the three-velocity v of a particle with four-velocity components p2, 1, 1, 1q.

U0 “ γ “ 2, and U i “ 1, so

v “
1

2
~ei

17

Not sure how to approach this problem.

(a) Prove that any timelike vector ~U for which U0 ą 0 and ~U ¨ ~U “ ´1 is the four-velocity of some world

line.

(b) Use this to prove that for any timelike vector ~V there is a Lorentz frame in which the ~V has zero spatial

components.

19 A body is uniformly accelerated if the four-vector ~a has constant spatial direction and magnitude, ~a ¨~a “

α2 ě 0.
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(a) Show that this implies the components of ~a in the body’s MCRF are all constant, and that these are

equivalent to the Galilean “acceleration”.

We normalize the vector ~a by dividing each of its terms by the magnitude of the vector, so

aλ

α
.

Since α is constant, and also the direction is constant, this means that the above expression is also constant,

as the normalized components tell you about the direction. If we multiply a constant by a constant, we

should still get a constant, so we multiply the above expression by α, getting aλ to be constant.

In the MCRF of an object, dτ “ dt, and so we can write

~a “
d~U

dt
“

˜

0,
dU1

dt
,

dU2

dt
,

dU3

dt

¸

,

which is analogous to the Galilean acceleration.

(b) A body is uniformly accelerated with α “ 10 m{s2. It starts from rest, and falls for a time t. Find its

speed as a function of t, and find the time to reach v “ 0.999.

~U Ñ
MCRF

p1, 0, 0, 0q

Ñ
O
pγ, γv, 0, 0q

d~U

dτ
Ñ

MCRF
p0, α, 0, 0q

Ñ
O
pγ, γα, 0, 0q

Ux “

ż t

0

dUx

dτ
dτ “

ż t

0

γα
dt

γ
“

ż t

0

α dt “ αt

“ γv “
v

?
1´ v2

v2 “ pαtq2p1´ v2q “ pαtq2 ´ pαtvq2

v2p1` pαtq2q “ pαtq2

v2 “
pαtq2

1` pαtq2
ùñ v “

d

pαtq2

1` pαtq2

To find the time to reach v “ 0.999, we go back to the expression γv “ αt, solve for t, and substitute for v

and α. Note that in natural units, α “ 10 m{s2c´2 « 1.11ˆ 10´16 m´1

t “
v

α
?

1´ v2
“

0.999

1.11ˆ 10´16 m´1
?

1´ 0.9992
« 2.01ˆ 1017 m.

24 Show that a positron and electron cannot annihilate to form a single photon, but they can annihilate to

form two photons.

We consider the center of momentum frame, where
ř

~ppiq ÑCM pEtotal, 0, 0, 0q. Without loss of generality,
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we assume that the velocities of the two particles are equal and opposite, such that

~pe` ÑCM mepγ, γv, 0, 0q, ~pe´ ÑCM mepγ,´γv, 0, 0q.

The photon they create will have to have a momentum of ~pγ,single ÑCM phν, hν, 0, 0q. By conservation of

four-momentum, we have

~pe` ` ~pe´ “ ~pγ,single

p~pe` ` ~pe´q ¨ p~pe` ` ~pe´q “ ~pγ,single ¨ ~pγ,single

p~pe` ¨ ~pe`q ` p~pe´ ¨ ~pe´q ` p~pe` ¨ ~pe´q “ 0

´m2
e ´m

2
e ´m

2
e “ 0 ùñ me “ 0!

Since we know that me is in fact non-zero, this cannot possibly happen.

Now consider the scenario wherein two photons are created, moving in opposite directions. Then they

would have momenta: ~pγ,1 ÑCM phν, hν, 0, 0q and ~pγ,2 ÑCM phν,´hν, 0, 0q. Invoking conservation of four-

momentum as before, we get

~pe` ` ~pe´ “ ~pγ,1 ` ~pγ,2

p~pe` ` ~pe´q ¨ p~pe` ` ~pe´q “ p~pγ,1 ` ~pγ,2q ¨ p~pγ,1 ` ~pγ,2q

´3m2
e “ p~pγ,1 ¨ ~pγ,1q ` p~pγ,1 ¨ ~pγ,2q ` p~pγ,2 ¨ ~pγ,2q

“ 0` p´h2ν2 ´ h2ν2q ` 0 “ ´2h2ν2,

so we end up with 3m2
e “ 2h2ν2, meaning two photons are produced with E2 “ 3

2m
2
e, which is entirely

reasonable.

25

(a) Consider a frame Ō moving with a speed v along the x-axis of O. Now consider a photon moving at an

angle θ from O’s x-axis. Find the ratio of its frequency in Ō and in O.

We must first construct the particle’s four-momentum. In the case where the photon was moving along the

x-axis (see Section 2.7), it had been found that the four-momentum was

~pÑ
O
pE,E, 0, 0q,

as this satisfied

~p ¨ ~p “ ´E2 ` E2 “ 0. (Schutz 2.37)

Now that the photon is moving at an angle θ from the x-axis, we need to redistribute the 3-momentum

accordingly. No specification was given as photon’s angle in the y- or z-axis, so without loss of generality, I

assume it is constrained to the x-y plane. This means we can write the four-momentum as

~pÑ
O
pE,E cos θ,E sin θ, 0q,
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which you can easily confirm satisfies ~p ¨ ~p “ 0.

Now we may apply the Lorentz transformation Λ0̄
αpvq to find the photon’s energy as observed by Ō, and

from that the frequency.

p0̄ “ Ē “ Λ0̄
αp

α “ γp0 ´ vγp1 ` 0` 0 “ γE ´ vγE cos θ

ùñ hν̄ “ γhν ´ vγhν cos θ

ùñ
ν̄

ν
“ γ ´ vγ cos θ “

1´ v cos θ
?

1´ v2

(b) Even when the photon moves perpendicular to the x-axis (θ “ π{2) there is a frequency shift. This is

the transverse Doppler shift, which is a result of time dilation. At which angle θ must the photon move such

that there is no Doppler shift between O and Ō?

To do this, we simply set ν̄{ν “ 1, and solve for θ.

1 “
1´ v cos θ
?

1´ v2
ùñ cos θ “ 1´

a

1´ v2

ùñ θ “ ˘ arccos
´

1´
a

1´ v2
¯

(c) Now use Equations 2.35 and 2.38 to find ν̄{ν.

Recall that ~U ÑO pγ, vγ, 0, 0q. Using Equation 2.35 we have

Ē “ hν̄ “ ´pE,E cos θ,E sin θ, 0q ¨ pγ, vγ, 0, 0q

“ ´p´pEγq ` Eγv cos θq “ Eγp1´ v cos θq “ hνγp1´ v cos θq

ν̄

ν
“

1´ v cos θ
?

1´ v2

26 Calculate the energy required to accelerate a particle of rest mass m ą 0 from speed v to speed v ` δv

(δv ! v), to first order in δv. Show that it would take infinite energy to accelerate to c.

From the four-momentum we have Ev “ mγ, and from that

Ev`δv “
m

a

1´ pv ` δvq2
.

If we do a Taylor expansion on p1´ pv ` δvq2q´1{2 we get

1
?

1´ v2
`

v δv

p1´ v2q3{2
`O

´

v2
¯

,

so

Ev`δv «
m

?
1´ v2

`
mv δv

p1´ v2q3{2

∆E “ Ev`δv ´ Ev «
mv δv

p1´ v2q3{2
“ mγ3v δv .

As v Ñ c, γ Ñ8 and therefore ∆E Ñ8.
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30 A rocket ship has four-velocity ~U ÑO p2, 1, 1, 1q, and it passes a cosmic ray with four-momentum

~p Ñ Op300, 299, 0, 0q ˆ 10´27kg. Compute the energy of the ray as measured by the rocket, using two

different methods.

(a) Find the Lorentz transformation from O to the rocket’s MCRF, and from that find the components pᾱ.

The Lorentz transformation for a boost in the x, y, and z directions is given by

Λβ̄α “

¨

˚

˚

˚

˚

˚

˚

˝

γ γvx γvy γvz

γvx γ 0 0

γvy 0 γ 0

γvz 0 0 γ

˛

‹

‹

‹

‹

‹

‹

‚

.

If we write out the terms of
¨

˚

˚

˚

˚

˚

˚

˝

1

0

0

0

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

γ γvx γvy γvz

γvx γ 0 0

γvy 0 γ 0

γvz 0 0 γ

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

2

1

1

1

˛

‹

‹

‹

‹

‹

‹

‚

,

then we are left with a system of equations

1 “ γp2` vx ` vy ` vzq,

0 “ γp2vx ` 1q,

0 “ γp2vy ` 1q,

0 “ γp2vz ` 1q.

Since γ may never be zero, we divide the last 3 terms by γ to obtain

2vi ` 1 “ 0 ùñ vi “ ´
1

2
,

and plugging into the first equation gives γ “ 2. From this we see that our Lorentz transformation matrix is

Λβ̄α “

¨

˚

˚

˚

˚

˚

˚

˝

2 ´1 ´1 ´1

´1 2 0 0

´1 0 2 0

´1 0 0 2

˛

‹

‹

‹

‹

‹

‹

‚

.

Now to find the energy as observed by the rocket, we need to find Ē “ p0̄

p0̄ “ Λ0̄
αp

α “ 2p0 ´ p1 ´ p2 ´ p3

“ p2 ¨ 300´ 1 ¨ 299´ 1 ¨ 0´ 1 ¨ 0q ˆ 10´27kg “ 3.01ˆ 10´25 kg “ Ē

(b) Use Schutz’s Equation 2.35.
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Ē “ ´~p ¨ ~Uobs “ ´p´p300 ¨ 2q ` p299 ¨ 1q ` p0 ¨ 1q ` p0 ¨ 1qq ˆ 10´27kg

“ 3.01ˆ 10´25 kg

(c) Which is quicker? Why?

Using Equation 2.35 was much quicker, as it was derived to handle this special case.

32 Consider a particle with charge e and mass m, which begins at rest, but scatters a photon with frequency

νi (Compton scattering). The photon comes off at an angle θ from the direction of the initial photon’s path.

Use conservation of four-momentum to find the scattered photon’s frequency, νf .

We will invoke: conservation of four-momentum and ~p ¨ ~p “ ´m2. ~pi and ~pf denote the initial and final

photon, and ~pe and ~pe1 denote the electron before and after collision.

~pi Ñ
O
pEi, Ei, 0, 0q

~pe Ñ
O
pm, 0, 0, 0q

~pf Ñ
O
pEf , Ef cos θ, Ef sin θ, 0q

~pi ` ~pe “ ~pf ` ~pe1

~pe1 “ ~pi ` ~pe ´ ~pf

~pe1 ¨ ~pe1 “ p~pi ` ~pe ´ ~pf q ¨ p~pi ` ~pe ´ ~pf q

´m2 “ ~pi ¨ ~pi ` ~pe ¨ ~pe ` ~pf ¨ ~pf ` 2p~pi ¨ ~pi ´ ~pi ¨ ~pf ´ ~pe ¨ ~pf q

“ 0´m2 ` 0` 2p~pi ¨ ~pi ´ ~pi ¨ ~pf ´ ~pe ¨ ~pf q

0 “ ~pi ¨ ~pi ´ ~pi ¨ ~pf ´ ~pe ¨ ~pf

“ ´Eim´ p´EiEf ` EiEf cos θq ` Efm

“ mpEf ´ Eiq ` EiEf p1´ cos θq

mpEi ´ Ef q “ EiEf p1´ cos θq

mhpνi ´ νf q “ h2νiνf p1´ cos θq

νi ´ νf
νiνf

“ h
1´ cos θ

m

1

νf
´

1

νi
“ h

1´ cos θ

m

1

νf
“

1

νi
` h

1´ cos θ

m
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Tensor analysis in special relativity

3.3 The
`

0
1

˘

tensors: one-forms

The symbol˜is used to denote a one-form, as~ is used to denote a vector. So p̃ is a one-form, or a type
`

0
1

˘

tensor.

Normal one-forms

Let S be some surface.

@~V tangent to S, p̃p~V q “ 0 ùñ p̃ is normal to S.

Furthermore, if S is a closed surface & p̃ is normal to S & @~U pointing outwards from S, p̃p~Uq ą 0 ùñ p̃

is an outward normal one-form.

3.5 Metric as a mapping of vectors into one-forms

Normal vectors and unit normal one-forms

~V is normal to a surface if Ṽ is normal to the surface. They are said to be unit normal if their magnitude

is ˘1, so ~V 2 “ Ṽ 2 “ ˘1.

• A time-like unit normal has magnitude ´1

• A space-like unit normal has magnitude `1

• A null normal cannot be a unit normal, because ~V 2 “ Ṽ 2 “ 0

3.10 Exercises

3

35
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(a)

p̃pAα~eαq “ Aαp̃p~eαq “ p̃pA0~e0 `A
1~e1 `A

2~e2 `A
3~e3q

“ A0p̃p~e0q `A
1p̃p~e1 `A

2p̃p~e2q `A
3p̃p~e3 “ Aαp̃p~eαq “ Aαpα P R

(b)

p̃Ñ
O
p´1, 1, 2, 0q

~AÑ
O
p2, 1, 0,´1q

~B Ñ
O
p0, 2, 0, 0q

p̃p ~Aq “ ´2` 1` 0` 0 “ ´1

p̃p ~Bq “ 0` 2` 0` 0 “ 2

p̃p ~A´ 3 ~Bq “ p̃p ~Aq ´ 3p̃p ~Bq “ ´1´ 3 ¨ 2 “ ´7

4 Given the following vectors

~AÑ
O
p2, 1, 1, 0q ~B Ñ

O
p1, 2, 0, 0q

~C Ñ
O
p0, 0, 1, 1q ~D Ñ

O
p´3, 2, 0, 0q

(Note that all parts were done with the assistance of numpy.)

(a) Show that they are linearly independent.

We do this by constructing a matrix, X, whose columns correspond to the four vectors. If the determinant

of X is non-zero, then that means the vectors are linearly independent.

detpXq “ det

¨

˚

˚

˚

˚

˚

˚

˝

2 1 0 ´3

1 2 0 2

1 0 1 0

0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‚

“ ´8

(b) Find the components of p̃ if

p̃p ~Aq “ 1, p̃p ~Bq “ ´1, p̃p~Cq “ ´1, p̃p ~Dq “ 0

We do this by observing that p̃ “ Aαpα, and so we have a system of four equations, which we can write in
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matrix form as
¨

˚

˚

˚

˚

˚

˚

˝

~A

~B

~C

~D

˛

‹

‹

‹

‹

‹

‹

‚

p̃ “

¨

˚

˚

˚

˚

˚

˚

˝

1

´1

´1

0

˛

‹

‹

‹

‹

‹

‹

‚

ùñ p̃ “

¨

˚

˚

˚

˚

˚

˚

˝

~A

~B

~C

~D

˛

‹

‹

‹

‹

‹

‹

‚

´1¨

˚

˚

˚

˚

˚

˚

˝

1

´1

´1

0

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

´ 1
4

´ 3
8

` 15
8

´ 23
8

˛

‹

‹

‹

‹

‹

‹

‚

.

(c) Find p̃p ~Eq, where ~E ÑO p1, 1, 0, 0q.

p̃p ~Eq “ pαE
α “ ´

5

8

(d) Determine whether p̃, q̃, r̃, and s̃ are linearly independent.

We do this by first setting up a system of equations for each of q̃, r̃, and s̃, as was done for p̃, and solving. I

will refer to the matrix whose rows were ~A, ~B, ~C, and ~D as X.

Xq̃ “

¨

˚

˚

˚

˚

˚

˚

˝

`0

`0

`1

´1

˛

‹

‹

‹

‹

‹

‹

‚

Xr̃ “

¨

˚

˚

˚

˚

˚

˚

˝

`2

`0

`0

`0

˛

‹

‹

‹

‹

‹

‹

‚

Xs̃ “

¨

˚

˚

˚

˚

˚

˚

˝

´1

´1

`0

`0

˛

‹

‹

‹

‹

‹

‹

‚

q̃ “

¨

˚

˚

˚

˚

˚

˚

˝

` 1
4

´ 1
8

´ 3
8

` 11
8

˛

‹

‹

‹

‹

‹

‹

‚

r̃ “

¨

˚

˚

˚

˚

˚

˚

˝

`0

`0

`2

`2

˛

‹

‹

‹

‹

‹

‹

‚

s̃ “

¨

˚

˚

˚

˚

˚

˚

˝

´ 1
4

´ 3
8

´ 1
8

` 1
8

˛

‹

‹

‹

‹

‹

‹

‚

Now if the matrix whose columns are comprised of p̃, q̃, r̃, and s̃ has a non-zero determinant, then the four

covectors must be linearly independent.

det
´

p̃ q̃ r̃ s̃
¯

“
1

4
,

and so they are indeed linearly independent.

6
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(a) Show that p̃ ‰ p̃p~eαqλ̃
α for arbitrary p̃.

Let us choose p̃ÑO p0, 1, e, πq, as a counter-example.

pαλ̃
α Ñ

O
0 ¨ p1, 1, 0, 0q ` 1 ¨ p1,´1, 0, 0q ` e ¨ p0, 0, 1,´1q ` π ¨ p0, 0, 1, 1q

Ñ
O
p1,´1, e` π, 0q��ÑO

p̃

(b) p̃ÑO p1, 1, 1, 1q. Find lα such that

p̃ “ lαλ̃
α

We may do this with a simple matrix inversion. We define Λ to be the matrix whose rows are formed by λ̃α.

Λl “ p ùñ l “ Λ´1p “

¨

˚

˚

˚

˚

˚

˚

˝

1

0

1

0

˛

‹

‹

‹

‹

‹

‹

‚

8 Draw the basis one-forms d̃t and d̃x of frame O.

They are

d̃tÑ
O
p1, 0, 0, 0q,

d̃xÑ
O
p0, 1, 0, 0q,

and they are shown in Figure 3.1.

9 At the points P and Q, estimate the components of the gradient d̃T .

Recall that d̃T ÑO

´

BT
Bx ,

BT
By

¯

, and so ∆T “ d̃Tαx
α “ d̃Tx∆x` d̃Ty∆y.

Now if we move only in the x direction from one of the points, we move some distance ∆x, change our

temperature by ∆t, and ∆y “ 0. Likewise for a movement in the y direction. Thus we can say

∆T “ d̃Tx∆x ∆T “ d̃Ty∆y

d̃Tx “
∆T

∆x
d̃Ty “

∆T

∆y

In Figure 3.2, from P I move a distance ∆x “ 0.5, which causes a temperature change of ∆T “ ´7, giving

d̃Tx “ ´14. Then I move a distance ∆y “ 0.5 and get the same temperature change of ∆T “ ´7, and so I

conclude that at point P, d̃T ÑO p´14,´14q.

At Q, we are in a flat region where T “ 0. If we move any non-zero distance ∆x or ∆y, so long as it does

not cross the T “ 0 isotherm, we have a ∆T “ 0, and thus d̃TpÑO p0, 0q.

13 Prove that d̃f is normal to surfaces of constant f .

If we move some small distance ∆xα “ ε, then there will be no change in the value of f , and thus we can

say Bf{Bxα “ 0, so

d̃f “
Bf

Bxα
d̃xα “ 0d̃xα “ 0.
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0 1 2 3 4 5
x

0

1

2

3

4

5

t

Figure 3.1: Problem 8: Basis one-forms of O. d̃t is given in blue and d̃x in red.

Since d̃f is defined to be normal to a surface if it is zero on every tangent vector, we have shown that d̃f is

normal to any surface of constant f .

14

p̃Ñ
O
p1, 1, 0, 0q q̃ Ñ

O
p´1, 0, 1, 0q

Prove by giving two vectors ~A and ~B as arguments that p̃b q̃ ‰ q̃ b p̃. Then find the components of p̃b q̃.

pp̃b q̃qp ~A, ~Bq “ p̃p ~Aqq̃p ~Bq “ AαpαB
βqβ “ pA

0 `A1qp´B0 `B2q,

“ ´A0B0 `A0B2 ´A1B0 `A1B2

pq̃ b p̃qp ~A, ~Bq “ q̃p ~Aqp̃p ~Bq “ AαqαB
βpβ “ p´A

0 `A2qpB0 `B1q

“ ´A0B0 ´A0B1 `A2B0 `A2B1,

And so we see that b is not commutative.

The components of the outer product of two tensors are given by the products of the components of the
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Figure 3.2: Problem 9: Isotherms.

individual tensors. Thus we can write the components as a 4ˆ 4 matrix.

pp̃b q̃qαβ “ pαqβ “

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 1 0

´1 0 1 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

18

(a) Find the one-forms mapped by g from

~AÑ
O
p1, 0,´1, 0q, ~B Ñ

O
p0, 1, 1, 0q,

~C Ñ
O
p´1, 0,´1, 0q, ~D Ñ

O
p0, 0, 1, 1q.

In general,

~V Ñ
O
pV 0, V 1, V 2, V 3q ùñ Ṽ “ g~V Ñ

O
p´V 0, V 1, V 2, V 3q,

and so

ÃÑ
O
p´1, 0,´1, 0q, B̃ Ñ

O
p0, 1, 1, 0q,

C̃ Ñ
O
p1, 0,´1, 0q, D̃ Ñ

O
p0, 0, 1, 1q.
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(b) Find the vectors mapped by g from

p̃Ñ
O
p3, 0,´1,´1q, q̃ Ñ

O
p1,´1, 1, 1q,

r̃ Ñ
O
p0,´5,´1, 0q, s̃Ñ

O
p´2, 1, 0, 0q.

By using the inverse tensor in reverse, we have the same effect as before, of negating the first component

~pÑ
O
p´3, 0,´1,´1q, ~q Ñ

O
p´1,´1, 1, 1q,

~r Ñ
O
p0,´5,´1, 0q, ~sÑ

O
p2, 1, 0, 0q.

20

In Euclidean 3-space, vectors and covectors are usually treated as the same, because they transform the

same. We will now prove this.

(a) Show that Aᾱ “ ΛᾱβA
β and Pβ̄ “ Λα

β̄
Pα are the same transformations if tΛα

β̄
u is equal to the transpose

of its inverse.

We can write that last statement as

Λαβ̄ “ ppΛ
α
β̄q
´1qT

and we know that

pΛαβ̄q
´1 “ Λβ̄α,

and also we know that the Lorentz transformation is symmetric, and so

pΛβ̄αq
T “ Λβ̄α,

which leads us to conclude that Λα
β̄
“ Λβ̄α, meaning the two transformations are the same.

(b) The metric has components tδiju. Prove that transformations between Cartesian coordinate systems

must satisfy

δīj̄ “ ΛkīΛ
l
j̄δkl,

and that this implies that Λk
ī

is an orthogonal matrix.

δīj̄ “ gp~eī, ~ej̄q “ gpΛkī~ek,Λ
l
j̄~ejq “ ΛkīΛ

l
j̄gp~ek, ~ejq “ ΛkīΛ

l
j̄δkl

Now show it is orthogonal

21

(a) A region of the t–x plane is bounded by lines t “ 0, t “ 1, x “ 0, and x “ 1. Within the plane, find the

unit outward normal 1-forms and their vectors for each boundary line.

I define unit outward normals as follows:

Let S be a closed surface. If, for each ~V tangent to S, we have p̃p~V q “ 0, then p̃ is normal to S.

In addition, if, for each ~U which points outwards from the surface, we have p̃p~Uq ą 0, then p̃ is an outward
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normal.

Furthermore, if p̃2 “ ˘1, then it is a unit outward normal.

For the problem at hand, I define the region inside the four lines to be Inside, and the region outside to be

Outside. For each of the four lines, I draw a vector ~V tangent (parallel) to the line, and ~U pointing outwards

(See Figure 3.3).

It helps to look at t “ 0 and t “ 1 together, and likewise for x, so I will start with t. We start with an

arbitrary p̃ÑO pp0, p1q, and ~V ÑO p0, V
1q, where V 1 ‰ 0.

p̃p~V q “ p0 ¨ 0` p1V
1 “ 0 ùñ p1 “ 0,

so p̃ÑO pp0, 0q is a normal 1-form to both lines. Now we find the corresponding unit normal, by taking

p̃2 “ ˘1 “ ´pp0q
2 ùñ p̃2 “ ´1 & p0 “ ˘1.

Whether we choose p0 to be positive or negative now depends on the line we are looking at, and which

direction is outward. For t “ 0, we have a vector ~U “ p´U0, U1q, where U0 ą 0.

p̃p~Uq “ p0p´U
0q ` 0 ¨ U1 ą 0 ùñ ´p0U

0 ą 0 ùñ p0 ă 0,

so for t “ 0 we have p̃ÑO p´1, 0q, and likewise for t “ 1 we have p̃ÑO p1, 0q. To get the associated vectors,

we apply the metric ηαβ , giving us ~pÑO p1, 0q for t “ 0 and ~pÑO p´1, 0q for t “ 1.

For x “ 0 and x “ 1, we instead have ~V ÑO pV
0, 0q, and following the same steps as before, we conclude

that: for x “ 0, p̃ÑO p0,´1q, ~pÑO p0,´1q, and for x “ 1, p̃ÑO p0, 1q, ~pÑO p0, 1q.

Figure 3.3: Problem 21.a

(b) Let another region be bounded by the set of points tp1, 0q, p1, 1q, p2, 1qu. Find an outward normal for the

null boundary and the associated vector.

23

(a) Prove that the set of all
`

M
N

˘

tensors forms a vector space, V .

Let T be the set of all
`

M
N

˘

tensors, s,p,q P T , ~A P Rn, and α P R. For T to be a vector space, we must

define the operations of addition, and scalar multiplication (amongst others).

Addition:

s “ p` q ùñ sp ~Aq “ pp ~Aq ` qp ~Aq

Scalar Multiplication:

r “ αp ùñ rp ~Aq “ αpp ~Aq

(b)

Prove that a basis for T is

t~eα b . . .b ~eγ b ω̃
µ b . . .b ω̃λu
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Still working on it

24 Given:

Mαβ Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 ´1 0 2

2 0 0 1

1 0 ´2 0

˛

‹

‹

‹

‹

‹

‹

‚

(a) Find:

(i)

M pαβq Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 1
2

1 ´1 0 1

1 0 0 ´ 1
2

1
2 1 ´ 1

2 0

˛

‹

‹

‹

‹

‹

‹

‚

; M rαβs Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 0 ´1 ´ 1
2

0 0 0 1

1 0 0 3
2

1
2 ´1 ´ 3

2 0

˛

‹

‹

‹

‹

‹

‹

‚

(ii)

Mα
β “ ηβµM

αµ Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 ´1 0 0

1 ´1 0 2

2 0 0 1

1 0 ´2 0

˛

‹

‹

‹

‹

‹

‹

‚

(iii)

M β
α “ ηαµM

µβ Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 ´1 0 0

1 ´1 0 2

2 0 0 1

1 0 ´2 0

˛

‹

‹

‹

‹

‹

‹

‚

(iv)

Mαβ “ ηβµM
µ

α Ñ

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 ´1 0 2

2 0 0 1

1 0 ´2 0

˛

‹

‹

‹

‹

‹

‹

‚

(b) Does it make sense to separate the
`

1
1

˘

tensor with components Mα
β into symmetric and antisymmetric

parts?

No, it would not make sense. For one, the notation for (anti)symmetric tensors do not even allow one to

write it sensibly (M
pα
βq ). More importantly, one argument refers to vectors, and the other to covectors, so

it does not make sense to switch them.

(c)
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ηαβ “ ηαµηβµ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

“ δαβ

31

Still working on it

(33)

34 Define double-null coordinates u “ t´ x, v “ t` x in Minkowski space.

(a) Let ~eu be the vector connecting the pu, v, y, tq coordinates p0, 0, 0, 0q and p1, 0, 0, 0q, and let ~ev be the

vector connecting p0, 0, 0, 0q and p0, 1, 0, 0q. Find ~eu and ~ev in terms of ~et and ~ex, and plot the basis vectors

in a spacetime diagram of the t–x plane.

u “ t´ x “ 0 ùñ t “ `x v “ t` x “ 0 ùñ t “ ´x

u “ t´ x “ 1 ùñ t “ 1` x v “ t` x “ 1 ùñ t “ 1´ x

We draw the vectors ~eu and ~ev in Figure 3.4, such that they point from the appropriate points of intersection

on these lines of constant u and v. From this it is obvious that ~ev ` ~eu “ ~et, and that ~ev ´ ~eu “ ~ex, or

likewise ~ev “ ~et ´ ~eu and ~eu “ ~ev ´ ~ex. This is a system of 2 equations with two unknowns.

~ev “ ~et ´ ~ev ` ~ex ùñ ~ev “
1

2
p~et ` ~exq,

~eu “
1

2
p~et ` ~exq ´ ~ex ùñ ~eu “

1

2
p~et ´ ~exq.

(b) Show that ~eα, α P tu, v, y, zu form a basis for vectors in Minkowski space.

~A “ Aα~eα “ Au~eu `A
v~ev `A

y~ey `A
z~ez

“
Au

2
p~et ´ ~exq `

Av

2
p~et ` ~exq `A

y~ey `A
z~ez

“
1

2
pAv `Auq~et `

1

2
pAv ´Auq~ex `A

y~ey `A
z~ez

If we let At “ 1
2 pA

v `Auq and Ax “ 1
2 pA

v ´Auq, then

~A “ Aα~eα “ At~et `A
x~ex `A

y~ey `A
z~ez

(c) Find the components of the metric tensor, g in this new basis.
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To make this concise, we will begin with some definitions. Let w P tu, vu, and q P ty, zu. We also define

λpwq ”

$

’

&

’

%

´1, if w “ u,

`1, if w “ v.

It follows that

~ew “
1

2
p~et ` λ~exq.

Now we can show that

gww “ ~ew ¨ ~ew “
1

2
p~et ` λ~exq ¨

1

2
p~et ` λ~exq

“
1

4
r~et ¨ ~et ` 2λp~et ¨ ~exq ` λ

2p~ex ¨ ~exqs

“
1

4
p´1` 2λ ¨ 0` 1 ¨ 1q “ 0,

so guu “ gvv “ 0.

For the u and v cross terms, we have

guv “ gvu “ ~eu ¨ ~ev “
1

2
p~et ´ ~exq ¨

1

2
p~et ` ~exq

“
1

4
r~et ¨ ~et ` 0 ¨ ~et ¨ ~ex ´ ~ex ¨ ~exs

“
1

4
p´1` 0´ 1q “ ´

1

2

For the w with y and z cross terms we have

gwq “ ~ew ¨ ~eq “
1

2
p~et ` λ~exq ¨ ~eq

“
1

2
r~et ¨ ~et ` λ~ex ¨ ~exs

“ 0

so guy “ gvy “ guz “ gvz “ 0. We also already know gyy “ gzz “ 1, and gyz “ gzy “ 0, so we can write the

components of the metric tensor in this new coordinate system as

gαβ “

¨

˚

˚

˚

˚

˚

˚

˝

0 ´ 1
2 0 0

´ 1
2 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

(d) Show that ~eu and ~ev are null, but not orthogonal.

~eu ¨ ~eu “ guu “ 0 ùñ ~eu is null

~ev ¨ ~ev “ gvv “ 0 ùñ ~ev is null
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~eu ¨ ~ev “ guv “ ´
1

2
‰ 0 ùñ ~eu and ~ev are not orthogonal.

(e) Compute the four one-forms d̃u, d̃v, gp~eu, q, and gp~ev, q in terms of d̃t and d̃x.

d̃φÑO

ˆ

Bφ

Bt
,
Bφ

Bx
,
Bφ

By
,
Bφ

Bz

˙

,

so

d̃tÑO p1, 0, 0, 0q, d̃xÑO p0, 1, 0, 0q,

d̃uÑO
1

2
p1,´1, 0, 0q, d̃uÑO

1

2
p1, 1, 0, 0q,

from which it is obvious that

d̃u “
1

2
pd̃t´ d̃xq, d̃v “

1

2
pd̃t` d̃xq.
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−3 −2 −1 0 1 2 3
−3
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1
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�ex

�et

�eu

�ev

Figure 3.4: Problem 34a: Spacetime diagram of double-null coordinate basis vectors in t–x plane.
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Chapter 5

Preface to Curvature

5.8 Exercises

1

(a) Repeat the argument leading to Equation 5.1, but this time assume that only a fraction ε ă 1 of the

mass’s kinetic energy is converted into a photon.

If only a fraction ε of the energy is converted into a photon, then it will start with an energy of εpm `

mgh`O
`

v4
˘

, but once it reaches the top it should have an energy of εm, as it loses the component due to

gravitational potential energy. Thus

E1

E
“

εm

εpm`mgh`O
`

v4q
˘ “

m

m`mgh`Opv4q
“ 1´ gh`O

´

v4
¯

(b) Assume Equation 5.1 does not hold. Devise a perpetual motion device.

If we assume that the photon does not return to an energy m once it reaches the top, but instead has an

energy m1 ą m, then we could create the perpetual motion device shown in Figure 5.1. A black box consumes

the photon with energy m1, and splits it into a new object of mass m, and a photon of energy m1 ´m. The

object repeats the action of the original falling mass, creating an infinite loop.

2 Explain why a uniform gravitational field would not be able to create tides on Earth.

Tides depend on there being a gravitational field gradient. If the curvature closer to the source of the field

(e.g. the Moon) is greater than it is further away, then the closer side will move towards the source more

than the further side, thus creating tides. In the absense of such a gradient, there would be no difference in

curvature between the two sides, and thus they would not stretch relative to each other.

7 Calculate the components of Λα
1

β and Λµν1 for transformations px, yq Ø pr, θq.

¨

˝

∆r

∆θ

˛

‚“

¨

˝

Br{Bx Br{By

Bθ{Bx Bθ{By

˛

‚

¨

˝

∆x

∆y

˛

‚

¨

˝

∆x

∆y

˛

‚“

¨

˝

Bx{Br Bx{Bθ

By{Br By{Bθ

˛

‚

¨

˝

∆r

∆θ

˛

‚

49
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Figure 5.1: Problem 1: Perpetual motion device.

“

¨

˝

x{
a

x2 ` y2 y{
a

x2 ` y2

´y{px2 ` y2q x{px2 ` y2q

˛

‚

¨

˝

∆x

∆y

˛

‚ “

¨

˝

cos θ ´r sin θ

sin θ r cos θ

˛

‚

¨

˝

∆r

∆θ

˛

‚

“

¨

˝

cos θ sin θ

´p1{rq sin θ p1{rq cos θ

˛

‚

¨

˝

∆x

∆y

˛

‚ “

¨

˝

x{
a

x2 ` y2 ´y

y{
a

x2 ` y2 x

˛

‚

¨

˝

∆r

∆θ

˛

‚

Λrx “ x{
a

x2 ` y2 “ cos θ Λxr “ cos θ “ x{
a

x2 ` y2

Λry “ y{
a

x2 ` y2 “ sin θ Λyr “ sin θ “ y{
a

x2 ` y2

Λθx “ ´y{px
2 ` y2q “ ´p1{rq sin θ Λxθ “ ´r sin θ “ ´y

Λθy “ x{px2 ` y2q “ p1{rq cos θ Λyθ “ r cos θ “ x

8

(a) f ” x2` y2` 2xy, ~V Ñ
px,yq

px2` 3y, y2` 3xq, ~W Ñ
pr,θq

p1, 1q. Express f “ fpr, θq, and find the components

of ~V and ~W in a polar basis, as functions of r and θ.

f “ x2 ` y2 ` 2xy “ px` yq2
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“ pr cos θ ` r sin θq2 “ r2 sin2 θ ` r2 cos2 θ ` 2r2 sin θ cos θ

“ r2p1` sinp2θqq

~V Ñ
px,yq

¨

˝

r2 cos2 θ ` 3r sin θ

r2 sin2 θ ` 3r cos θ

˛

‚

~V Ñ
pr,θq

¨

˝

cos θ sin θ

´p1{rq sin θ p1{rq cos θ

˛

‚

¨

˝

r2 cos2 θ ` 3r sin θ

r2 sin2 θ ` 3r cos θ

˛

‚

Ñ
pr,θq

¨

˝

r2 cos2 θ ` 6r sin θ cos θ ` r2 sin3 θ

´r cos2 θ sin θ ´ 3 sin2 θ ` r sin2 θ cos θ ` 3 cos2 θ

˛

‚

Ñ
pr,θq

¨

˝

r2psin3 θ ` cos3 θq ` 6r sin θ cos θ

r sin θ cos θpsin θ ´ cos θq ` 3pcos2 θ ´ sin2 θq

˛

‚

Ñ
pr,θq

¨

˝

r2psin3 θ ` cos3 θq ` 3r sinp2θq

pr{2q sinp2θqpsin θ ´ cos θq ` 3 cosp2θq

˛

‚

~W Ñ
pr,θq

¨

˝

cos θ sin θ

´p1{rq sin θ p1{rq cos θ

˛

‚

¨

˝

1

1

˛

‚

Ñ
pr,θq

¨

˝

cos θ ` sin θ

p1{rqpcos θ ´ sin θq

˛

‚

(b) Express the components of d̃f in px, yq and obtain them in pr, θq by:

(i) using direct calculation in pr, θq:

d̃f Ñ
pr,θq

`

Bf{Br , Bf{Bθ
˘

“

´

2rp1` sinp2θqq, 2r2 cosp2θq
¯

(ii) transforming the components in px, yq:

d̃f Ñ
px,yq

`

Bf{Bx , Bf{By
˘

“
`

2px` yq, 2px` yq
˘

“
`

2rpcos θ ` sin θq, 2rpcos θ ` sin θq
˘

´

pd̃fqr pd̃fqθ

¯

“

´

1 1
¯

¨

˝

cos θ ´r sin θ

sin θ r cos θ

˛

‚

“

2rpcos θ ` sin θq
‰

“

´

2rpcos2 θ ` sin2 θ ` 2 sin θ cos θq 2r2pcos2 θ ´ sin2 θq
¯

“

´

2rp1` sinp2θqq 2r2 cosp2θq
¯

(c) Now find the pr, θq components of the one-forms Ṽ and W̃ associated with the vectors ~V and ~W by

(i) using the metric tensor in pr, θq:
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Vr “ grαV
α “ grrV

r ` grθV
θ

“ r2psin3 θ ` cos3 θq ` 3r sinp2θq

Vθ “ gθrV
r ` gθθV

θ “ p1{2qr3 sinp2θqpsin θ ´ cos θq ` 3r2 cosp2θq

Wr “ grαW
α “ grxW

x ` gryW
y

“ 1pcos θ ` sin θq ` 0
“

p1{rqpcos θ ´ sin θq
‰

“ cos θ ` sin θ

Wθ “ gθxW
x ` gθyW

y “

“ 0pcos θ ` sin θq ` r2
“

rpcos θ ´ sin θq
‰

“ rpcos θ ´ sin θq

(ii) using the metric tensor in px, yq and then doing a coordinate transformation:

Vx “ V x; Vy “ V y

Vr “ ΛαrVα “ ΛxrVx ` ΛyrVy

“ cos θVx ` sin θVy

“ r2 cos3 θ ` p3{2qr sinp2θq ` r2 sin3 θ ` p3{2qr sinp2θq

“ r2pcos3 θ ` sin3 θq ` 3r sinp2θq

Vθ “ ΛαθVα “ ΛxθVx ` ΛyθVy

“ p´r sin θqVx ` pr cos θqVy

“ ´r3 cos2 θ sin θ ´ 3r2 sin2 θ ` r3 sin2 θ cos θ ` 3r2 cos2 θ

“ r3 sin θ cos θpsin θ ´ cos θq ` 3r2pcos2 θ ´ sin2 θq

“ p1{2qr3 sinp2θqpsin θ ´ cos θq ` 3r2 cosp2θq

Wx “W x “Wy “W y “ 1

Wr “ ΛαrWα “ ΛxrWx ` ΛyrWy

“ cos θ ` sin θ

Wθ “ ΛαθWα “ ΛxθWx ` ΛyθWy

“ ´r sin θ ` r cos θ

“ rpcos θ ´ sin θq

11 Consider V Ñ
px,yq

px2 ` 3y, y2 ` 3xq.
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(a) Find V α,β in Cartesian coordinates.

V x,x “ 2x; V y,y “ 2y; V x,y “ V y,x “ 3.

(b)

V µ
1

;ν1 “ Λµ
1

αΛβν1V
α
,β

V r;r “ ΛrxΛxrV
x
,x ` ΛryΛyrV

y
,y ` ΛrxΛyrV

x
,y ` ΛryΛxrV

y
,x

“ pcos2 θqp2r cos θq ` psin2 θqp2r sin θq ` psin θ cos θqp3q ` psin θ cos θqp3q

“ 2rpcos3 θ ` sin3 θq ` 3 sinp2θq

V θ;θ “ ΛθxΛθrV
x
,x ` ΛθyΛθrV

y
,y ` ΛθxΛyθV

x
,y ` ΛθyΛθrV

y
,x

“ psin2 θqp2r cos θq ` pcos2 θqp2r sin θq ` p´ sin θ cos θqp3q ` p´ sin θ cos θqp3q

“ sinp2θqrrpsin θ ` cos θq ´ 3s

V r;θ “ ΛrxΛxθV
x
,x ` ΛryΛyθV

y
,y ` ΛrxΛyθV

x
,y ` ΛryΛxθV

y
,x

“ p´r sin θ cos θqp2r cos θq ` pr sin θ cos θqp2r sin θq ` pr cos2 θqp3q ` p´r sin2 θq

“ r2 sinp2θqpsin θ ´ cos θq ` 3r cosp2θq

V θ;r “ ΛθxΛxrV
x
,x ` ΛθyΛyrV

y
,y ` ΛθxΛyrV

x
,y ` ΛθyΛxrV

y
,x

“ p´p1{rq sin θ cos θqp2r cos θq ` pp1{rq sin θ cos θqp2r sin θq ` p´p1{rq sin2 θqp3q ` pp1{rq cos2 θqp3q

“ sinp2θqpsin θ ´ cos θq `
3

r
cosp2θq

(c) compute V µ
1

;ν1 directly in polars using the Christoffel symbols.

Recall that we have Γµrr “ Γrrθ “ Γθθθ “ 0, Γθrθ “ 1{r, and Γrθθ “ ´r.

V µ
1

;ν1 “ V µ
1

,ν1 ` V
α1Γµ

1

α1ν1

V r;r “ V r,r ` V
α1Γrα1r

V r,r “ BV r{Br “ 2rpsin3 θ ` cos3 θq ` 3 sinp2θq

V αΓrαr “ V rΓrrr ` V
θΓrθr “ 0

V r;r “ V r,r “ 2rpsin3 θ ` cos3 θq ` 3 sinp2θq

V θ;θ “ V θ,θ ` V
α1Γθα1θ

V θ,θ “ BV θ
M

Bθ “ pr{2q sinp2θqpsin θ ` cos θq ` r cosp2θqpsin θ ´ cos θq ´ 6 sinp2θq

V α
1

Γθα1θ “ V rΓθrθ ` V
θΓθθθ

“ rr2psin3 θ ` cos3 θq ` 3r sinp2θqsp1{rq

“ rpsin3 θ ` cos3 θq ` 3 sinp2θq
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V θ;θ “ sinp2θqrrpsin θ ` cos θq ´ 3s

V r;θ “ V r,θ ` V
rΓrrθ ` V

θΓrθθ

“ V r,θ ` V
θΓrθθ “ BV r{Bθ ´ rV θ

“ 6r cosp2θq ` p3{2qr2 sinp2θqpsin θ ´ cos θq ´ pp1{2qr2 sinp2θqpsin θ ´ cos θq ` 3r cosp2θqq

“ r2 sinp2θqpsin θ ´ cos θq ` 3r cosp2θq

V θ;r “ V θ,r ` V
rΓθrr ` V

θΓθθr “ V θ,r `
1

r
V θ

“ p1{2q sinp2θqpsin θ ´ cos θq ` p1{2q sinp2θqpsin θ ´ cos θq ` p3{rq cosp2θq

“ sinp2θqpsin θ ´ cos θq ` p3{rq cosp2θq

(d) Calculate the divergence using the results from part (a)

V α,α “ V x,x ` V
y
,y “ 2px` yq “ 2rpsin θ ` cos θq

(e) Calculate the divergence using the results from either part (b) or (c).

V µ
1

;µ1 “ V r;r ` V
θ
;θ

“ 2rpsin3 θ ` cos3 θq ` 3 sinp2θq ` sinp2θqrrpsin θ ` cos θq ´ 3s

“ 2rpsin θ ` cos θq

(f) Compute V µ
1

;µ1 using Equation 5.56.

V µ
1

;µ1 “
1

r

B

Br
prV rq `

B

Bθ
pV θq “ 2rpsin θ ` cos θq

12

p̃ Ñ
px,yq

px2 ` 3y, y2 ` 3xq.

(a) Find the components pα,β in Cartesian coordinates.

Since pα,β “ Bpα
L

Bxβ , it’s simply px,x “ 2x, py,y “ 2y, and px,y “ py,x “ 3.

(b) Find the components pµ1;ν1 in polar coordinates by using the transformation Λαµ1Λ
β
ν1pα,β .

pr;r “ pΛ
x
rq

2
px,x ` pΛ

y
rq

2
py,y ` 2ΛxrΛ

y
rpx,y

“ pcos2 θqp2r cos θq ` psin2 θqp2r sin θq ` 2psin θ cos θqp3q

“ 2rpsin3 θ ` cos3 θq ` 3 sinp2θq

pθ;θ “ pΛ
x
θq

2
px,x `

`

Λyθ
˘2
py,y ` 2ΛxθΛ

y
θpx,y

“ p´r sin θq2p2r cos θq ` pr cos θq2p2r sin θq ` 2p3p´r sin θqpr cos θqq

“ r2 sinp2θqprpsin θ ` cos θq ´ 3q
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pr;θ “ ΛxrΛ
x
θpx,x ` ΛyrΛ

y
θpy,y ` ΛxrΛ

y
θpx,y ` ΛyrΛ

x
θpy,x

“ p´r sin θ cos θqp2r cos θq ` pr sin θ cos θqp2r sin θq ` 3pr cos2 θ ´ r sin2 θq

“ r2 sinp2θqpsin θ ´ cos θq ` 3r cosp2θq,

and by the symmetry of pα,β in Cartesian coordinates, pθ;r “ pr;θ.

(c) Now find pµ1;ν1 using the Christoffel symbols.

pr;r “ pr,r ´ prΓ
r
rr ´ pθΓ

θ
rr “ pr,r “ Bpr{Br

“ B{Br
”

r2pcos3 θ ` sin3 θq ` 3r sinp2θq
ı

“ 2rpsin3θ ` cos3 θq ` 3 sinp2θq

pθ;θ “ pθ,θ ´ prΓ
r
θθ ´ pθΓ

θ
θθ “ pθ,θ ` rpr “ Bpθ{Bθ

“ B{Bθ
”

p1{2qr3 sinp2θqpsin θ ´ cos θq ` 3r2 cosp2θq
ı

` r
”

r2pcos3 θ ` sin3 θq ` 3r sinp2θq
ı

“ r2 sinp2θq
“

rpsin θ ` cos θq ´ 3
‰

pr;θ “ pr,θ ´ prΓ
r
rθ ´ pθΓ

θ
rθ “ Bpr{Bθ ´ p1{rqpθ

“ r2 sinp2θqpsin θ ´ cos θq ` 3r cosp2θq

pθ;r “ pθ,r ´ prΓ
r
θr ´ pθΓ

θ
θr “ Bpθ{Br ´ p1{rqpθ

“ r2 sinp2θqpsin θ ´ cos θq ` 3r cosp2θq

13 Show in polars that gµ1α1V
α1

;ν1 “ pµ1;ν1 .

grα1V
α1

;r “ grrV
r
;r ` grθV

θ
;r

“ 1V r;r “ pr;r

gθα1V
α1

;θ “ gθrV
r
;θ ` gθθV

θ
;θ

“ r2V θ;θ “ pθ;θ

grα1V
α1

;θ “ grrV
r
;θ ` grθV

θ
;θ

“ 1V r;θ “ pθ;r

gθα1V
α1

;r “ gθrV
r
;r ` gθθV

θ
;r

“ r2V θ;r “ pθ;r

14 Compute ∇βA
µν for the tensor A with components:

Arr “ r2, Arθ “ r sin θ,

Aθθ “ tan θ, Aθr “ r cos θ
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Arr,r “ 2r Arr,θ “ 0

Aθθ,r “ 0 Aθθ,θ “ sec2 θ

Arθ,r “ sin θ Arθ,θ “ r cos θ

Aθr,r “ cos θ Aθr,θ “ ´r sin θ

∇βA
µν “ Aµν,β `A

ανΓµαβ `A
µαΓναβ

∇rA
rr “ Arr,r `A

αrΓrαr `A
rαΓrαr

“ Arr,r `A
rrΓrrr `A

θrΓrθr `A
rrΓrrr `A

rθΓrθr

“ Arr,r “ 2r

∇θA
rr “ Arr,θ `A

αrΓrαθ `A
rαΓrαθ

“ Arr,θ `A
rrΓrrθ `A

θrΓrθθ `A
rrΓrrθ `A

rθΓrθθ

“ pAθr `ArθqΓrθθ “ ´r
2psin θ ` cos θq

∇rA
θθ “ Aθθ,r `A

αθΓθαr `A
θαΓθαr

“ Aθθ,r `A
rθΓθrr `A

θθΓθθr `A
θrΓθrr `A

θθΓθθr

“ 2AθθΓθθr “ p2{rq tan θ

∇θA
θθ “ Aθθ,θ `A

αθΓθαθ `A
θαΓθαθ

“ Aθθ,θ `A
rθΓθrθ `A

θθΓθθθ `A
θrΓθrθ `A

θθΓθθθ

“ Aθθ,θ ` pA
rθ `AθrqΓθrθ “ sin θ ` cos θ ` sec2 θ

∇rA
rθ “ Arθ,r `A

αθΓrαr `A
rαΓθαr

“ Arθ,r `A
rθΓrrr `A

θθΓrθr `A
rrΓθrr `A

rθΓθθr

“ Arθ,r `A
rθΓθθr “ 2 sin θ

∇θA
rθ “ Arθ,θ `A

αθΓrαθ `A
rαΓθαθ

“ Arθ,θ `A
rθΓrrθ `A

θθΓrθθ `A
rrΓθrθ `A

rθΓθθθ

“ Arθ,θ `A
θθΓrθθ `A

rrΓθrθ “ rp1` cos θ ´ tan θq

∇rA
θr “ Aθr,r `A

αrΓθαr `A
θαΓrαr

“ Aθr,r `A
rrΓθrr `A

θrΓθθr `A
θrΓrrr `A

θθΓrθr

“ Aθr,r `A
θrΓθθr “ 2 cos θ

∇θA
θr “ Aθr,θ `A

αrΓθαθ `A
θαΓrαθ

“ Aθr,θ `A
rrΓθrθ `A

θrΓθθθ `A
θrΓrrθ `A

θθΓrθθ

“ Aθr,θ `A
rrΓθrθ `A

θθΓrθθ “ ´r sin θ

15 Find the components of V α;β;γ for the vector V r “ 1, V θ “ 0.
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We start by finding the components of V α;β .

V α;β “ V α,β ` V
µΓαµβ .

By noting that V α,β “ V θ “ Γrrr “ Γrrθ “ 0, we can simplify this to

V α;β “ V rΓαrβ ,

which means

V r;r “ V r;θ “ V θ;r “ 0; V θ;θ “
1

r
.

Now we can say

V α;β;µ “∇µV
α
;β “ V α;β,µ ` V

γ
;β Γαγµ ´ V

α
;γ Γγβµ.

Note that V θ;θ is a function only of r, and so V θ;θ,r “ ´1{r2, and all other partial derivatives are zero.

We can also see by inspecting the components, that V r;µ;ν “ V θ;µ Γrθµ, as all other components go to zero.

Likewise, we can see that V θ;r;µ “ ´V
θ
;θ Γθrµ. It then becomes easy to find all the individual components.

I summarize their values in Table 5.1.

16 Repeat the steps leading from Equation 5.74 to 5.75.

Recalling that gαµ;β “ 0, we can rewrite Equation 5.72 as

gαβ,µ “ Γναµgνβ ` Γνβµgαν .

Now if we switch the β and µ indices, and then switch the α and β indices, we get two more equations,

gαµ,β “ Γναβgνµ ` Γνµβgαν ,

gβµ,α “ Γνβαgνµ ` Γνµαgβν .

Now we add the first two equations and subtract the third, getting

gαβ,µ ` gαµ,β ´ gβµ,α “ Γναµgνβ ` Γνβµgαν ` Γναβgνµ ` Γνµβgαν ´ Γνβαgνµ ´ Γνµαgβν

“ Γναµgβν ` Γνβµgαν ` Γναβgνµ ` Γνβµgαν ´ Γναβgνµ ´ Γναµgβν

α β µ V α;β;µ

θ θ θ 0
θ θ r ´1{r2

θ r θ ´1{r2

θ r r 0
r θ θ ´1
r θ r 0
r r θ 0
r r r 0

Table 5.1: Components of the tensor in Exercise 15.
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“ 2Γνβµgαν .

Recalling that gαγgαν “ gγν “ δγν , we divide both sides by 2 and multiply by gαγ , arriving at Equation

5.75:

1

2
gαγpgαβ,µ ` gαµ,β ´ gβµ,α “

2

2
gαγgανΓνβµ

“ Γνβµ

17 Show how V β,α and V µΓβυα transform under change of coordinates. Neither follows a tensor transfor-

mation law, but their sum does.

V α
1

,β1 “
BV α

1

Bxβ1
“ Λββ1

B

Bxβ

”

Λα
1

αV
α
ı

“ Γββ1

„

V α
B

Bxβ
Λα

1

α ` Λα
1

α

B

Bxβ
V α



“ Λββ1V
αΛα

1

α,β ` Λββ1Λ
α1

αV
α
,β

‰ Λββ1Λ
α1

αV
α
,β

B~eα1

Bxβ1
“ Λββ1

B

Bxβ
rΛαα1~eαs

“ Λββ1

„

Λαα1
B

Bxβ
~eα ` ~eα

B

Bxβ
Λαα1



“ Λββ1Λ
α
α1Γ

µ
αβ~eµ ` Λββ1Λ

α
α1,β ~eα

‰ Λββ1Λ
α
α1Γ

µ
αβ~eµ,

so we have shown that B~eα1
M

Bxβ
1

is not a tensor, and since V µ is a tensor, and the product of a tensor and

a non-tensor is also not a tensor, then V µΓβνα is not a tensor.

According to Carroll, the precise transformation is

Γν
1

µ1λ1 “ Λµµ1Λ
λ
λ1Λ

ν1

νΓνµλ ` Λµµ1Λ
λ
λ1Λ

ν1

µλ.

Now we add the two expressions, in order to show that it is a tensor equation

V ν
1

,λ1 ` V
µ1Γν

1

µ1λ1 “ Λλλ1V
νΛν

1

ν,λ ` Λλλ1Λ
ν1

νV
ν
,λ ` Λλλ1Λ

ν1

νV
µΓνµλ ` Λλλ1V

νΛν
1

λ,µ

“ Λλλ1Λ
ν1

ν

´

V ν,λ ` V
µΓνµλ

¯

So it does in fact transform like a tensor equation, meaning V ν;λ is a tensor!

18

Verify Equation 5.78:

~eα̂ ¨ ~eβ̂ ” gα̂β̂ “ δα̂β̂

ω̃α̂ ¨ ω̃β̂ ” gα̂β̂ “ δα̂β̂

,

.

-
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For the basis vectors, we have

gr̂r̂ “ ~er̂ ¨ ~er̂ “ ~er ¨ ~er “ grr “ 1

gθ̂θ̂ “ ~eθ̂ ¨ ~eθ̂ “

ˆ

1

r
~eθ

˙

¨

ˆ

1

r
~eθ

˙

“
1

r2
p~eθ ¨ ~eθq “

1

r
grθ “ 1

gr̂θ̂ “ ~er̂ ¨ ~eθ̂ “ ~er ¨

ˆ

1

r
~eθ

˙

“
1

r
p~er ¨ ~eθq “

1

r
grθ “ 0

gθ̂r̂ “ gr̂θ̂ “ 0

So it is indeed true that gα̂β̂ “ δα̂β̂ .

Now for the basis one-forms, we have

gr̂r̂ “ ω̃r̂ ¨ ω̃r̂ “ d̃r ¨ d̃r “ grr “ 1

gθ̂θ̂ “ ω̃θ̂ ¨ ω̃θ̂ “ prd̃θq ¨ prd̃θq “ r2pd̃θ ¨ d̃θq “ r2gθθ “ r2p1{r2q “ 1

gr̂θ̂ “ ω̃r̂ ¨ ω̃θ̂ “ d̃r ¨ prd̃θq “ rpd̃r ¨ d̃θq “ rgrθ “ 0

gθ̂r̂ “ gr̂θ̂ “ 0

So it is indeed true that gα̂β̂ “ δα̂β̂ .

19 Repeat the calculations going from Equations 5.81 to 5.84, with d̃r and d̃θ as your bases. Show that they

form a coordinate basis.

d̃r “ cos θ dx` sin θ dy “
Bξ

Bx
d̃x`

Bξ

By
d̃y

Bξ

Bx
“ cos θ;

Bξ

By
“ sin θ

B

By

Bξ

Bx
“
B

Bx

Bξ

By
ùñ

B

By
px{rq “

B

Bx
py{rq,

which is true, so we have shown that at least d̃r may be part of a coordinate basis.

d̃θ “ ´
1

r
sin θd̃x`

1

r
cos θd̃y “

Bη

Bx
d̃x`

Bη

By
d̃y

Bη

Bx
“ ´

1

r
sin θ;

Bη

By
“

1

r
cos θ

B

By

Bη

Bx
“
B

Bx

Bη

By
ùñ

B

By

„

´
1

r
sin θ



“
B

Bx

„

1

r
cos θ



,

which is also true, and thus we have shown that d̃r and d̃θ form a coordinate basis.

20 For a non-coordinate basis t~eµu, let cαµν “∇~eµ~eν ´∇~eν~eµ. Use this in place of Equation 5.74 to derive

a more general expression for Equation 5.75.

c is antisymmetric w.r.t. its bottom indices.

cαµν~eα ` c
α
νµ~eα “ p∇~eµ~eν ´∇~eν~eµq ` p∇~eν~eµ ´∇~eµ~eνq “ 0
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ùñ cαµν~eα “ ´c
α
νµ~eα

ùñ cαµν “ ´c
α
νµ

Expanding the covariant derivatives in the original expression, we get

cαµν~eα “ ~eν;µ ´ ~eµ;ν

“ p~eν,µ ´ ~eαΓανµq ´ p~eµ,ν ´ ~eαΓαµνq

“ ~eαpΓ
α
µν ´ Γανµq

cαµν “ Γαµν ´ Γανµ

Now we recall the result from Exercise 16, but without assuming symmetry of the Christoffel symbols

gαβ,µ ` gαµ,β ´ gβµ,α “ Γναµgνβ ` Γνβµgαν ` Γναβgνµ ` Γνµβgαν ´ Γνβαgνµ ´ Γνµαgβν

“ Γναµgβν ` Γνβµgαν ` Γναβgνµ ` Γνµβgαν ´ Γνβαgνµ ´ Γνµαgβν

“ gβνpΓ
ν
αµ ´ Γνµαq ` gανpΓ

ν
βµ ` Γνµβq ` gνµpΓ

ν
αβ ´ Γνβαq

“ gβνc
ν
αµ ` gανpΓ

ν
βµ ` Γνµβ ` Γνβµ ´ Γνβµq ` gνµc

ν
αβ

“ gβνc
ν
αµ ` gνµc

ν
αβ ` gανp2Γνβµ ` c

ν
µβq

gνµ2gανΓνβµ “ gνµpgαβ,µ ` gαµ,β ´ gβµ,α ´ cβαµ ´ cµαβ ´ cαµβq

Γνβα “
1

2
gνµpgαβ,µ ` gαµ,β ´ gβµ,α ´ cβαµ ´ cµαβ ´ cαµβq

21 A uniformly accelerated observer has world line

tpλq “ a sinhλ, xpλq “ a coshλ

(a) Show that the spacelike line tangent to his world line (which is parameterized by λ) is orthogonal to the

line parameterized by a.

The line tangent to his world line is

~V Ñ
d

dλ
pt, xq “ pa coshλ, a sinhλq.

The line parameterized by a is

~W Ñ
d

da
pt, xq “ psinhλ, coshλq

If they are orthogonal, then their dot product must be zero

~V ¨ ~W “ ´pa coshλ sinhλq ` pa sinhλ coshλq “ 0,

which it is.

(b) To prove that this defines a valid coordinate transform from pλ, aq to pt, xq, we show that the determinant
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of the transformation matrix is non-zero.

det

¨

˝

Bt{Bλ Bt{Ba

Bx{Bλ Bx{Ba

˛

‚“
Bt

Bλ

Bx

Ba
´
Bt

Ba

Bx

Bλ

“ a cosh2 λ´ a sinh2 λ “ a

‰ 0,

and so it is indeed a valid coordinate transform.

To plot the curves parameterized by a, we take

´t2 ` x2 “ a2pcosh2 λ´ sinh2 λq

“ a2,

which gives us a family of space-like hyperbola, depending on the chosen value of a.

To plot the curves parameterized by λ, we take

x “ a coshλ ùñ a “ x{ coshλ

t “ a sinhλ “ x sinhλ{ coshλ “ x tanhλ,

which gives us a family of space-like lines, depending on the chosen value of λ.

A plot of these curves is given in Figure 5.2, from which it is clear that only half of the t–x plane is covered.

When |t| “ |x|, then a “ 0, since ´t2 ` x2 “ a2. We already found that the determinant of the coordinate

transformation is a, so this would make the determinant 0, making it singular.

(c) Find the metric tensor and Christoffel symbols in pλ, aq coordinates.

First we find the basis vectors:

~eλ “ apcoshλ~et ` sinhλ~exq,

~ea “ sinhλ~et ` coshλ~ex.

Now we find the components of the metric tensor g as

gλλ “ a2pcoshλ~et ` sinhλ~exq
2

“ a2pcosh2 ληtt ` sinh2 ληxx ` 2 sinhλ coshληtxq

“ a2psinh2 λ´ cosh2 λq

“ ´a2

gaa “ psinhλ~et ` coshλ~exq
2

“ sinh2 ληtt ` cosh2 ληxx ` 2 sinhλ coshληtx

“ 1
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x

t

Figure 5.2: Lines of constant λ and a in Problem 21.

gλa “ gaλ “ apcoshλ~et ` sinhλ~exqpsinhλ~et ` coshλ~exq

“ apcoshλ sinhλpηtt ` ηxxq ` 2 sinhλ coshληtxq

“ 0

g Ñ
pλ,aq

¨

˝

´a2 0

0 1

˛

‚

Now for the Christoffel symbols, since we know this is a coordinate basis, we can use

Γγβµ “
1

2
gαγpgαβ,µ ` gαµ,β ´ gβµ,αq

Γλλλ “
1

2
gαλpgαλ,λ ` gαλ,λ ´ gλλ,αq “

1

2
gaλp´gλλ,aq

“ 0

Γaaa “
1

2
gαapgαa,a ` gαa,a ´ gaa,αq

“ 0

Γλλa “
1

2
gαλpgαλ,a ` gαa,λ ´ gλa,αq “

1

2
gλλgλλ,a “

1

2
p´a´2qp´2aq

“ 1{a

Γaλa “
1

2
gαapgαλ,a ` gαa,λ ´ gλa,αq “

1

2
gλagλλ,a
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“ 0

Γλaa “
1

2
gαλpgαa,a ` gαa,a ´ gaa,αq

“ 0

Γaλλ “
1

2
gαapgαλ,λ ` gαλ,λ ´ gλλ,αq “

1

2
gaap´gλλ,aq “

1

2
¨ 2 ¨ a

“ a

22

Uα∇αV
β “W β ùñ UαV γ;α “W γ

ùñ gαβU
αV γ;α “ gγβW

γ

ùñ UαVβ;α “Wβ

ùñ Uα∇αVβ “Wβ
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Chapter 6

Curved Manifolds

6.9 Exercises

1 Determine if the following sets are manifolds, and why. List any exceptional points.

(a) Phase space in Hamiltonian mechanics is generally smooth, though it may contain singular points,

depending on the system described. So it is a manifold, excluding the singularities.

(b) The interior of a circle in 2D Euclidean space is smooth everywhere, and is therefore a manifold.

(c) The set of permutations of n objects is not a manifold, as it is discontinuous.

(d) The set of solutions to xypx2 ` y2 ´ 1q is a manifold. The solutions form a unit circle, (x2 ` y2 “ 1),

as well as lines which span the x- and y-axes (x “ 0, y “ 0). The singular values occur at the points of

intersection: p0, 0q, p0,˘1q, and p˘1, 0q.

2 On which of the manifolds in Exercise 1 is it customary to use a metric? What are those metrics? Why

would metrics not be defined for some?

(a) Phase space is comprised of two variables, p and q, each of which represent different physical quantities,

with incompatible units. For instance, if p is momentum and q is position, then p2 ` q2 is non-physical.

(b) The metric for the interior of a circle in 2D Euclidean space would be the Euclidean norm in 2 dimensions.

While this could be given by p∆sq2 “ p∆xq2 ` p∆yq2, it would be more natural to express in units of r and

θ.

p∆sq2 “ p∆xq2 ` p∆yq2

“ px´ x0q
2 ` py ´ y0q

2

“ r2
”

pcos θ ´ cos θ0q
2 ` psin θ ´ sin θ0q

2
ı

“ r2
”

cos2 θ ` cos2 θ0 ´ 2 cos θ cos θ0 ` sin2 θ ` sin2 θ0 ´ 2 sin θ sin θ0

ı

“ r2
“

1` 1´ 2 cospθ ´ θ0q
‰

“ 2r2
“

1´ cosp∆θq
‰

“ 4r2 sin2
p∆θ{2q

65
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(c) This was not a manifold.

(d) Since this is again 2D Euclidean space, we could use the Euclidean norm in 2 dimensions. This time it

would be more natural to express distances in px, yq coordinates, unless we restricted ourselves to the unit

circle portion of this manifold.

4 Prove the following:

(a) The number of independent terms in B2xα
M

Bxγ
1

Bxµ
1

|P is 40.

The total number of components is 43, however, we do not want to consider duplicate terms. To find the

number of duplicate terms in total, we find the number of duplicate terms for a fixed value of α, and then

multiply that by 4. The number of terms for a fixed α is 42, and of those, 4 are completely independent

(the diagonals), and the remainder exist in pairs. Since we only want one from each pair, we divide the total

count by two, which means that the total number of duplicate components is 4
“

p42 ´ 4q{2
‰

, and so the total

number of non-duplicate components is 43 ´ 4
“

p42 ´ 4q{2
‰

“ 40.

In the next part, I cheat and use a formula. I will apply it to this part first, to show that it works. If you

have a symmetric rank k tensor with n dimensions, then it has

˜

ˆ

n

k

˙

¸

“

ˆ

n` k ´ 1

k

˙

independent components. In the case of this problem, by fixing α, we get 4 rank 2 tensors of 4 dimensions,

and so the total number of independent components is

4

ˆ

4` 2´ 1

2

˙

“ 40.

(b) The number for B2xα
M

Bxλ
1

Bxµ
1

xν
1

|P is 80.

Here, if we fix α, we have 4 symmetric rank 3 tensors of 4 dimensions, and so there are

4

ˆ

4` 3´ 1

3

˙

“ 80

independent components.

(c) The number for gαβ,γ1µ1 |P is 100.

If we interchange αβ, but fix γ1µ1, then we have a symmetric rank 2 tensor of 4 dimensions, which has

ˆ

4` 2´ 1

2

˙

“ 10

independent components. Likewise, if we interchange γ1µ1 but fix αβ, we get 10 independent components.

Multiply the two and we have 100 independent components.

7

(a) Define detpAq in terms of cofactors of elements.

detpAq “
n
ÿ

j“1

p´1qi`jai,jMi,j “

n
ÿ

i“1

p´1qi`jai,jMi,j
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(b) Compute d
dx detpAq, where A is a 2ˆ 2 matrix. Show that this satisfies Equation 6.39.

First we note that, for A1ˆ1, detpAq “ a1,1. Thus, for A2ˆ2, Mi,j “ ai1,j1 , where i ‰ i1 and j ‰ j1. Therefore

we can rewrite the determinant of A2ˆ2 as

detpAq “
2
ÿ

i“1

p´1qi`jai,jai1,j1

“ p´1qj`1a1,ja2,j1 ` p´1qj`2a2,ja1,j1 .

If we assume j “ 1 (it doesn’t really matter if we choose 1 or 2), then this simplifies to

detpAq “ p´1q2a1,1a2,2 ` p´1q3a2,1a1,2

“ a1,1a2,2 ´ a2,1a1,2.

We can then see that the derivative is

B

Bxµ
detpAq “

B

Bxµ
pa11a22 ´ a21a12q

“ a11a22,µ ` a22a11,µ ´ a21a12,µ ´ a12a21,µ

Now to relate this to Equation 6.39, we let A be the metric g. Then the derivative of its determinant is

g,µ “ g11g22,µ ` g22g11,µ ´ g21g12,µ ´ g12g21,µ

“ g11g22,µ ` g22g11,µ ´ 2g12g12,µ.

Now if we expand Equation 6.39, we see we have

g “ g11g22 ´ g12g21 “ g11g22 ´ pg12q
2

gαβgαβ,µ “ g11g11,µ ` g
22g22,µ ` 2g12g12,µ

ggαβgαβ,µ “ pg11g22 ´ pg12q
2qpg11g11,µ ` g

22g22,µ ` 2g12g12,µq

“ g22g11,µ ´ g
11pg12q

2g11,µ ` g11g22,µ ´ g
22pg12q

2g22,µ ` 2g11g22g
12g12,µ ´ 2g12g12,µ

“ g11g22,µ ` g22g11,µ ´ 2g12g12,µ ` 2g11g22g
12g12,µ ´ pg12q

2pg11g11,µ ` g
22g22,µq.

If it is the case that 2g11g22g
12g12,µ´pg12q

2pg11g11,µ`g
22g22,µq “ 0, then this is consistent with our previous

expression for g,µ, but I’m not sure how to show that.

10 A “straight line” on a sphere forms a great circle. The sum of the interior angles of a triangle whose

sides are formed by arcs of great circles is greater than 180˝. Show that the rotation of a vector, parallel

transported around such a triangle (Figure 6.3 in Schutz), is exactly equal to the excess of that 180˝ sum.

11 What guarantees we can find a vector field ~V satisfying:

V α;β “ V α,β ` ΓαµβV
µ “ 0
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(a) The integrability condition follows from the commuting of partial derivatives,
“

Bν , Bβ
‰

V α “ 0. Show

that this implies

pΓαµβ,ν ´ Γαµν,βqV
µ “ pΓαµβΓµσν ´ ΓαµνΓµσβqV

σ “ 0

Since we must satisfy V α,β `ΓαµβV
µ “ 0, then it must be the case that V α,β “ ´ΓαµβV

µ. Differentiating

both sides, we get

V α,βν “ ´Γαµβ,νV
µ ´ ΓαµβV

µ
,ν

“ ´Γαµβ,νV
µ ` ΓαµβΓµλνV

λ

V α,νβ “ ´Γαµν,βV
µ ` ΓαµνΓµσβV

σ

V α,βν “ V α,νβ

ùñ ´Γαµβ,νV
µ ` ΓαµβΓµσνV

σ “ ´Γαµν,βV
µ ` ΓαµνΓµσβV

σ

pΓαµβ,ν ´ Γαµν,βqV
µ “ pΓαµβΓµσν ´ ΓαµνΓµσβqV

σ

(b) By relabeling indices, we can work this into another form:

pΓαµβ,ν ´ Γαµν,βqV
µ “ pΓασβΓσµν ´ ΓασνΓσµβqV

µ

pΓαµβ,ν ´ Γαµν,β ` ΓασνΓσµβ ´ ΓασβΓσµνqV
µ “ 0

13

(a) Show that if ~A and ~B are parallel transported along a curve, their dot product is constant along that

curve.

The dot product being constant along the curve means that it must be parallel transported along the

curve, i.e. ∇~U p
~A ¨ ~Bq “ 0. We will now show this.

∇~U p
~A ¨ ~Bq “ Uλ∇λpgαβA

αBβq

“ UλpAαBβ���
�∇λgαβ ` gαβB

β∇λA
α ` gαβA

α∇λB
βq

“ BβUλ∇λA
α `AαUλ∇λB

β .

Notice that the terms Uλ∇λA
α and Uλ∇λB

β are just the parallel transport equations, and so they

come out to be zero, meaning ∇~U p
~A ¨ ~Bq “ 0, i.e. the dot product is constant along the curve.

(b) Show that if a geodesic is spacelike, timelike, or null somewhere, then it remains that way everywhere.

Since the dot product of two parallel transported vectors is constant, if we parallel transport a curve’s

tangent vector along itself (the geodesic), its magnitude (~U ¨ ~U) should remain constant. Since its

magnitude doesn’t change, it will remain spacelike, timelike, or null.

14 Show that if the curve in Equation 6.8 is a geodesic, the proper length is an affine parameter.
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Equation 6.8 states

` “

ż λ1

λ0

c∣∣∣~V ¨ ~V ∣∣∣dλ.
If the curve is a geodesic, we have just shown that the dot product of any two vectors remains constant along

the curve, and so we may pull it out of the integral.

` “

c∣∣∣~V ¨ ~V ∣∣∣ ż λ1

λ0

dλ “

c∣∣∣~V ¨ ~V ∣∣∣pλ1 ´ λ0q,

and so the proper length ` is indeed an affine parameter, as it can be obtained by a linear transformation of

the parameter of the curve, λ.

16

(a) Derive Equations 6.59 and 6.60 from 6.68.

Somehow Schutz uses a Taylor expansion to get 6.59 from 6.68. I honestly have no idea how he does

this, and Taylor expanding vectors and Christoffel symbols is black magic to me, so here’s my (obviously

wrong) attempt.

δV α “

ż

x1“a

Γαµ2V
µ dx2 ´

ż

x1“a`δa

Γαµ2V
µ dx2

`

ż

x2“b

Γαµ1V
µ dx1 ´

ż

x2“b`δb

Γαµ1V
µ dx1

«

ż b`δb

b

„

Γαµ2V
µ ` δa

B

Bx1

´

Γαµ2V
µ
¯

∣∣∣∣
a

dx2

´

ż b`δb

b

„

Γαµ2V
µ ` δa

B

Bx1

´

Γαµ2V
µ
¯

∣∣∣∣
a

dx2

`

ż a`δa

a

„

Γαµ1V
µ ` δb

B

Bx2

´

Γαµ1V
µ
¯

∣∣∣∣
b

dx1

´

ż a`δa

a

„

Γαµ1V
µ ` δb

B

Bx2

´

Γαµ1V
µ
¯

∣∣∣∣
b

dx1

« 0

but then a miracle occurred!!

« ´

ż b`δb

b

δa
B

Bx1

´

Γαµ2V
µ
¯

dx2

`

ż a`δa

a

δb
B

Bx2

´

Γαµ1V
µ
¯

dx1

The next step actually does make sense to me. Since we are integrating over such tiny areas (δa and

δb),
şa`δa

a
fpxqdx « δa fpaq, so

ż b`δb

b

δa
B

Bx1

´

Γαµ2V
µ
¯

dx2 « δa δb
B

Bx1

´

Γαµ2V
µ
¯

,

ż a`δa

a

δb
B

Bx2

´

Γαµ1V
µ
¯

dx1 « δa δb
B

Bx2

´

Γαµ1V
µ
¯

.
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Subtracting the two gives us

δV α « δa δb

„

´
B

Bx1

´

Γαµ2V
µ
¯

`
B

Bx2

´

Γαµ1V
µ
¯



.

(b) Derive Equation 6.61 from this.

Using a generalized form of Equation 6.53:

V α,β “ ´ΓαµβV
µ,

we arrive at the expression

pΓανλV
νq,β “ Γανλ,βV

ν ` ΓανλV
ν
,β “ Γανλ,βV

ν ´ ΓανλΓνµβV
ν .

Now we substitute µÑ ν in Equation 6.60, and use this expression to find

δV α « δa δb
”

´Γαν2,1V
ν ` Γαν2Γνµ1V

ν ` Γαν1,2V
ν ´ Γαν1Γνµ2V

ν
ı

« δa δb
”

Γαν1,2 ´ Γαν2,1 ` Γαν2Γνµ1 ´ Γαν1Γνµ2

ı

V ν .

18

(a) Derive Equations 6.69 and 6.70 from 6.68.

Rαβµν “
1

2
pgαν,βµ ´ gαµ,βν ` gβµ,αν ´ gβν,αµq

Rβαµν “
1

2
pgβν,αµ ´ gβµ,αν ` gαµ,βν ´ gαν,βµq

“
1

2
p´gαν,βµ ` gαµ,βν ´ gβµ,αν ` gβν,αµq

“ ´Rαβµν

Rαβνµ “
1

2
pgαµ,βν ´ gαν,βµ ` gβν,αµ ´ gβµ,ανq

“
1

2
p´gαν,βµ ` gαµ,βν ´ gβµ,αν ` gβν,αµq

“ ´Rαβµν

Rµναβ “
1

2
pgµβ,να ´ gµα,νβ ` gνα,µβ ´ gνβ,µαq

“
1

2
pgαν,βµ ´ gαµ,βν ` gβµ,αν ´ gβν,αµq

“ Rαβµν

2pRαβµν `Rανβµ `Rαµνβq “ gαν,βµ ´ gαµ,βν ` gβµ,αν ´ gβν,αµ

` gαµ,νβ ´ gαβ,νµ ` gνβ,αµ ´ gνµ,αβ

` gαβ,µν ´ gαν,µβ ` gµν,αβ ´ gµβ,αν
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“ 0

(b) Show that Equation 6.69 reduces the number of independent components from 4ˆ 4ˆ 4ˆ 4 to 6ˆ 7{2.

For a rank-2 symmetric tensor, you have pn{2qpn` 1q independent components. For an anti-symmetric

tensor you have pn{2qpn ´ 1q independent components. So for each of our pairs of anti-symmetric

indices, there are pn{2qpn´1q independent components. We can then treat the two pairs as a single pair

of symmetric indices, with that many possible values. The number of indices is therefore:

p1{2qrpn{2qpn´ 1qsrpn{2qpn´ 1q ` 1s “ p1{2qrp4{2qp4´ 1qsrp4{2qp4´ 1q ` 1s “ 6ˆ 7{2 “ 21.

(c) Show that Equation 6.70 only imposes one additional relation, separate from Equation 6.69, reducing

the total independent components to 20.

The addition of Equation 6.70 adds the condition that Rαrβµνs “ 0, and so the number of independent

components becomes
˜

ˆ

4

3

˙

¸

“

ˆ

4` 3´ 1

3

˙

“

ˆ

6

3

˙

“ 20.

19 Prove that the components of the Riemann tensor are all zero for polar coordinates in the Euclidean

plane. Recall that:

Γθpθrq “ 1{r; Γrθθ “ ´r

Rαβµν “ Γαβν,µ ´ Γαβµ,ν ` ΓασµΓσβν ´ ΓασνΓσβµ.

According to the computer algebra system, Maxima, the components are all zero.

(%i1) load(ctensor)$

(%i2) ct_coordsys(polar)$

(%i3) cmetric()$

(%i4) lg;

[ 1 0 ]

(%o4) [ ]

[ 2 ]

[ 0 r ]

(%i5) riemann(mcs);

This spacetime is flat

(%o5) done
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24 Using Equation 6.88, derive Equation 6.89.

Rαβµν,λ “
1

2
pgαν,βµλ ´ gαµ,βνλ ` gβµ,ανλ ´ gβν,αµλq

Rαβλµ,ν “
1

2
pgαµ,βλν ´ gαλ,βµν ` gβλ,αµν ´ gβµ,αλνq

Rαβνλ,µ “
1

2
pgαλ,βνµ ´ gαν,βλµ ` gβν,αλµ ´ gβλ,ανµq

2pRαβµν,λ `Rαβλµ,ν `Rαβνλ,µq “ gαν,βµλ ´ gαµ,βνλ ` gβµ,ανλ ´ gβν,αµλ

` gαµ,βλν ´ gαλ,βµν ` gβλ,αµν ´ gβµ,αλν

` gαλ,βνµ ´ gαν,βλµ ` gβν,αλµ ´ gβλ,ανµ

“ 0

25

(a) Prove the Ricci tensor is the only independent contraction of the Riemann tensor. All others are ˘Rαβµν

or 0.

There are three possible ways to contract the Riemann tensor. If we contract on the second lower index,

we have the definition of the Ricci tensor: Rβν “ Rαβαν .

The value of contracting the last index is the easiest to find, and can be found by manipulating the

above expression and invoking the anti-symmetry properties of the Riemann tensor:

Rβν “ Rαβαν “ ´R
α
βνα ùñ Rαβνα “ ´Rβν .

Given this identity, finding the value of the remaining contraction is easy. Equation 6.70 states that

Rαβµν `Rανβµ `Rαµνβ “ 0.

If we raise the α’s with the metric, we get

gαβpRαβµν `Rανβµ `Rαµνβq “ 0

Rββµν `R
β
νβµ `R

β
µνβ “ 0

Rββµν `R
β
νβµ ´R

β
µβν “ 0

Rββµν “ 0

(b) Show that the Ricci tensor is symmetric.

Rβν “ Rαβαν

gαλRβν “ Rλβαν “ Rανλβ
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gαλgαλRβν “ gαλRανλβ “ Rλνλβ “ Rνβ

ùñ Rβν “ Rνβ

28

(a) Derive Equation 6.19 using the coordinate transformation px, y, zq Ñ pr, θ, φq

We begin by finding the basis vectors in pr, θ, φq, using

~er “
Bx

Br
~ex `

By

Br
~ey `

Bz

Br
~ez,

~eθ “
Bx

Bθ
~ex `

By

Bθ
~ey `

Bz

Bθ
~ez,

~eφ “
Bx

Bφ
~ex `

By

Bφ
~ey `

Bz

Bφ
~ez.

The variables transform according to

x “ r sin θ cosφ,

y “ r sin θ sinφ,

z “ r cos θ.

Now we take the derivatives

Bx

Br
“ sin θ cosφ,

Bx

Bθ
“ r cos θ cosφ,

Bx

Bφ
“ ´r sin θ sinφ,

By

Br
“ sin θ sinφ,

By

Bθ
“ r cos θ sinφ,

By

Bφ
“ ´r sin θ cosφ,

Bz

Br
“ cos θ,

Bz

Bθ
“ ´r sin θ,

Bz

Bφ
“ 0.

The basis vectors are therefore

~er “ sin θ cosφ~ex ` sin θ sinφ~ey ` cos θ~ez

~eθ “ r cos θ cosφ~ex ` r cos θ sinφ~ey ´ r sin θ~ez

~eφ “ ´r sin θ sinφ~ex ` r sin θ cosφ~ey

Now we find the components of the metric tensor using the fact that gαβ “ ~eα ¨ ~eβ .

grr “ ~er ¨ ~er “ psin θ cosφq2δxx ` psin θ sinφq2δyy ` pcos2 θq2δzz ` . . .

“ sin2 θ cos2 φ` sin2 θ sin2 φ` cos2 θ “ sin2 θ ` cos2 θ

“ 1,

gθθ “ ~eθ ¨ ~eθ “ pr cos θ cosφq2δxx ` pr cos θ sinφq2δyy ` p´r sin θq2δzz

“ r2pcos2 θ cos2 φ` cos2 θ sin2 φ` sin2 θq
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“ r2pcos2 θ ` sin2 θq

“ r2,

gφφ “ ~eφ ¨ ~eφ “ p´r sin θ sinφq2δxx ` pr sin θ cosφq2δyy

“ r2psin2 θ sin2 φ` sin2 θ cos2 φq

“ r2 sin2 θ.

Now for the off-diagonal elements, we take advantage of the symmetry properties of the metric to reduce

it from 6 terms to 3.

grθ “ gθr “ ~er ¨ ~eθ “ psin θ cosφqpr cos θ cosφqδxx ` psin θ sinφqpr cos θ sinφqδyy ` pcos θqp´r sin θqδzz

“ r
´

sin θ cos θ cos2 φ` sin θ cos θ sin2 φ´ sin θ cos θ
¯

“ 0,

grφ “ gφr “ ~er ¨ ~eφ “ psin θ cosφqp´r sin θ sinφqδxx ` psin θ sinφqpr sin θ cosφqδyy ` pcos θqp0qδzz

“ rp´ sin2 θ sinφ cosφ` sin2 θ sinφ cosφq

“ 0,

gθφ “ gφθ “ ~eθ ¨ ~eφ “ pr cos θ cosφqp´r sin θ sinφqδxx ` pr cos θ sinφqpr sin θ cosφqδyy

“ r2p´ cos θ cosφ sin θ sinφ` cos θ cosφ sin θ sinφq

“ 0.

The metric tensor in spherical polar coordinates is therefore

pgijq “

¨

˚

˚

˚

˚

˝

1 0 0

0 r2 0

0 0 r2 sin2 θ

˛

‹

‹

‹

‹

‚

.

(b) Use Equation 6.19 to find the metric on the surface of a sphere.

On the surface of a sphere, r is fixed, and therefore ∆r “ 0. As a result of this, we do not need to

consider grr, and the only relevant components become pθ, φq. So we can simplify the metric as:

pgijq “

¨

˚

˝

r2 0

0 r2 sin2 θ

˛

‹

‚

.

(c) Find the components of gαβ on the surface of a sphere.

Since gαβ is a diagonal matrix, the components of its inverse are simply equal to their multiplicative
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inverse. So the matrix is

pgijq “

¨

˚

˝

1{r2 0

0 1{r2 sin2 θ

˛

‹

‚

.

29 Calculate the Riemann tensor of the unit sphere in spherical polar coordinates.

The metric for a unit sphere in spherical polars is

pgijq “

¨

˚

˝

1 0

0 sin2 θ

˛

‹

‚

,

and so one component of the Riemann tensor is

Rθφθφ “
1

2

`

gθφ,φθ ´ gθθ,φφ ` gφθ,θφ ´ gφφ,θθ
˘

“
1

2

`

gθθ,φφ ´ gφφ,θθ
˘

“
1

2

˜

B2

Bφ2
1´

B2

Bθ2
sin2 θ

¸

“
1

2
sin2 θ.

Using the symmetry and anti-symmetry properties of the Riemann tensor, we find the remaining components:

Rφθφθ “ sin2 θ

Rθφφθ “ Rφθθφ “ ´ sin2 θ.

All remaining components are zero, as they have indices θθθφ or φφφθ, and the only non-zero second

derivative of the metric is gφφ,θθ, which requires two of each index, not three.

30 Calculate the Riemann tensor on a cylinder.

The metric in cylindrical polars, pr, θ, zq, is given by

pgijq “

¨

˚

˚

˚

˚

˝

1 0 0

0 r2 0

0 0 1

˛

‹

‹

‹

‹

‚

.

On the surface of a cylinder (excluding the top and bottom) the radius is unchanging, so ∆r “, as was the

case on the surface of a sphere. The metric can therefore be simplified in pθ, zq coordinates as:

pgijq “

¨

˚

˝

r2 0

0 1

˛

‹

‚

.

From the metric alone, it is obvious that the components of the Riemann tensor must all be zero. This is

because the Riemann tensor depends on second derivatives of the components of the metric, and the only

variable term is gθθ “ r2. Since we removed the dependence on the coordinate r, none of the terms in the

Riemann tensor will involve differentiating with respect to r, and therefore they will all be zero.
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32 A 4D manifold has coodinates pu, v, w, pq, and a metric

pgαβq “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

(a) Show that the manifold is flat and has signature `2.

Since every element in the metric is a constant, gαβ,µν ” 0, and therefore Rαβµν ” 0, so the manifold is

flat.

The signature is just the sum of the diagonal elements, which in this case is 1` 1 “ 2.

(b) Since this manifold is flat and has signature `2, it must be a Minkowski spacetime. Find a coordinate

transformation to pt, x, y, zq.

Λg “ η

Λgg´1 “ ηg´1

Λ “ ηg´1 “ ηg (since g is symmetric)

pΛαβq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

0 ´1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

33 A three-sphere (or glome) is the 4D analog of a sphere, with cartesian coordinates px, y, z, wq, described

by the equation x2 ` y2 ` z2 ` w2 “ r2, where r is its radius.

(a) Define coordinates pr, θ, φ, χq, given by

x “ r sinχ sin θ cosφ, y “ r sinχ sin θ sinφ,

z “ r sinχ cos θ, w “ r cosχ,

and show that pθ, φ, χq form the coordinates of the surface of the sphere.

Per usual, we begin by finding the elements of the Jacobian

Λ : px, y, z, wq Ñ pr, θ, φ, χq.
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Bx{Br “ sinχ sin θ cosφ, By{Br “ sinχ sin θ sinφ, Bz{Br “ sinχ cos θ, Bw{Br “ cosχ,

Bx{Bθ “ r sinχ cos θ cosφ, By{Bθ “ r sinχ cos θ sinφ, Bz{Bθ “ ´r sinχ sin θ, Bw{Bθ “ 0,

Bx{Bφ “ ´r sinχ sin θ sinφ, By{Bφ “ r sinχ sin θ cosφ, Bz{Bφ “ 0, Bw{Bφ “ 0,

Bx{Bχ “ r cosχ sin θ cosφ, By{Bχ “ r cosχ sin θ sinφ, Bz{Bχ “ r cosχ cos θ, Bw{Bχ “ ´r sinχ.

the basis vectors are then

~eξ “
Bxα

Bξ
~eα

~er “ sinχ sin θ cosφ~ex ~eθ “ r sinχ cos θ cosφ~ex ~eφ “ ´r sinχ sin θ sinφ~ex ~eχ “ r cosχ sin θ cosφ~ex

` sinχ sin θ sinφ~ey ` r sinχ cos θ sinφ~ey ` r sinχ sin θ cosφ~ey ` r cosχ sin θ sinφ~ey

` sinχ cos θ~ez ´ r sinχ sin θ~ez ` r cosχ cos θ

` cosχ~ew ´ r sinχ~ew

Notice that if we fix χ “ π{2, this reduces to the basis vectors for 2D spherical polars.

The components of the metric can be found using gαβ “ ~eα ¨ ~eβ .

grr “ sin2 χ sin2 θ cos2 φηxx ` sin2 χ sin2 θ sin2 φηyy ` sin2 χ cos2 θηzz ` cos2 χηww

“ sin2 χpsin2 θ ` cos2 θq ` cos2 χ “ sin2 χ` cos2 χ “ 1

gθθ “ r2
´

sin2 χ cos2 χ cos2 φηxx ` sin2 χ cos2 θ sin2 φηyy ` sin2 χ sin2 θηzz

¯

“ r2 sin2 χpcos2 θ ` sin2 θq “ r2 sin2 χ

gφφ “ r2
´

sin2 χ sin2 θ sin2 φηxx ` sin2 χ sin2 θ cos2 φηyy

¯

“ r2 sin2 χ sin2 θ

gχχ “ r2
´

cos2 χ sin2 θ cos2 φηxx ` cos2 χ sin2 θ sin2 φηyy ` cos2 χ cos2 θηzz ` sin2 χηww

¯

“ r2
´

cos2 χ sin2 θ ` cos2 χ cos2 θ ` sin2 χ
¯

“ r2
´

cos2 χ` sin2 χ
¯

“ r2

To show that the off-diagonal terms are zero, I got lazy and used the Maxima computer algebra system.

Its naming convention and ordering for these coordinates is different, but it still makes it clear that the

metric is diagonal.

(%i1) load(ctensor)$ /* load the component tensor package */

(%i2) ct_coordsys(spherical4d)$ /* use the 3-sphere metric */

(%i3) lg; /* display the metric */

[ 1 0 0 0 ]

[ ]

[ 2 ]
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[ 0 r 0 0 ]

(%o3) [ ]

[ 2 2 ]

[ 0 0 r sin (theta) 0 ]

[ ]

[ 2 2 2 ]

[ 0 0 0 sin (eta) r sin (theta) ]

So in our notation, the metric tensor is

pgijq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 r2 sin2 χ 0 0

0 0 r2 sin2 χ sin2 θ 0

0 0 0 r2

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

(b) Show that the metric on the surface of the three-sphere only has non-zero components gθθ, gφφ, and gχχ.

On the surface of a three-sphere, r is unchanging, so ∆r is always zero. Thus, we may reduce the

dimensionality of the metric to 3: pθ, φ, χq.

pgijq “

¨

˚

˚

˚

˚

˝

r2 sin2 χ 0 0

0 r2 sin2 χ sin2 θ 0

0 0 r2

˛

‹

‹

‹

‹

‚

.

34 Prove the following identities for a general metric tensor in a general coordinate system. Equations 6.39

and 6.40 will be helpful.

(a) Γµµν “
1
2 pln |g|q,ν

Γµµν “
p
?
´gq,ν
?
´g

“
1

2
?
´g

p´gq,ν
?
´g

“
p´gq,ν
2p´gq

“
|g|,ν
2|g|

“
1

2
pln |g|q,ν

(b) gµνΓαµν “ p´g
αβ?´gq,β{

?
´g

gµνΓαµν “ ´pg
αβ?´gq,β{

?
´g

“ ´pgαβp
?
´gq,β ` g

αβ
,β

?
´gq{

?
´g

“ ´pgαβp
?
´gq,β{

?
´g ` gαβ,β q

“ ´pgαβΓλλβ ` g
αβ
,β q

1

2
gµνgβαpgβµ,ν ` gβν,µ ´ gµν,βq “ ´pg

αβgλσgλσ,β{2` g
αβ
,β q

1

2
gµνgβαpgβµ,ν ` gβν,µq ´ g

µνgβαgµν,β{2 “ ´pg
αβgλσgλσ,β{2` g

αβ
,β q
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1

2
gµνgβαpgβµ,ν ` gβν,µq “ ´g

αβ
,β

´
1

2
gµνpgβα,νgβµ ` g

βα
,µgβνq “ ´g

αβ
,β

´
1

2
pδ ν
β gβα,ν ` δ

µ
β gβα,µq “ ´g

αβ
,β

´
1

2
p2gβα,β q “ ´g

αβ
,β

(c) F
rµνs

;ν “ p
?
´gF rµνsq,ν{

?
´g

F rµνs;ν “ F rµνs,ν ` F
rµνsΓανα “ pF

rµνs
,ν

?
´g ` Fµνp

?
´gq,νq{

?
´g “ p

?
´gFµνq,ν

(d) gασgσβ,γ “ ´g
ασ
,γgσβ We start with gασgσβ “ δαβ . Then we differentiate both sides to get

gασ,γgσβ ` g
ασgσβ,γ “ 0

gασgσβ,γ “ ´g
ασ
,γgσβ

(e) gµν,α “ ´Γµβαg
βν ´ Γνβαg

µβ

gµν;α “ gµν,α ` Γµβαg
βν ` Γνβαg

µβ “ 0

gµν,α “ ´Γµβαg
βν ´ Γνβαg

µβ

35 Compute the metric tensor, Christoffel symbols, and Riemann tensor for a spacetime with line element:

ds2 “ ´e2Φ dt2 ` e2Λ dr2 ` r2pdθ2 ` sin2 θ dφ2q.

Based on the line element, the metric must be

pgαβq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´e2Φ 0 0 0

0 e2Λ 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

˛

‹

‹

‹

‹

‹

‹

‹

‚

pgαβq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´e´2Φ 0 0 0

0 e´2Λ 0 0

0 0 1{r2 0

0 0 0 1{r2 sin2 θ

˛

‹

‹

‹

‹

‹

‹

‹

‚

For the rest of this problem, I took advantage of the Maxima computer algebra system. According to it, the

non-zero, unique Christoffel symbols are

Γrtt “ expp2Φ´ 2Λq
dΦ

dr
Γtrt “

dΦ

dr

Γrrr “
dΛ

dr
Γθrθ “ Γφrφ “

1

r

Γrθθ “ ´ expp´2Λqr Γφθφ “ cot θ

Γrφφ “ ´ expp´2Λqr sin2 θ Γθφφ “ ´ sin θ cos θ
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The independent non-zero components of the Riemann tensor are

Rtθtθ “ exp
`

2pΦ´ Λq
˘

«

dΦ

dr

ˆ

dΛ

dr
´

dΦ

dr

˙

´
d2Φ

dr2

ff

Rtθtθ “ Rtφtφ “ ´
1

r
exp

`

2pΦ´ Λq
˘dΦ

dr

Rrrtt “
dΛ

dr

dΦ

dr
´

d2Φ

dr2
´

ˆ

dΦ

dr

˙2

Rrθrθ “ Rrφrφ “ ´
1

r

dΛ

dr

Rθφθφ “ expp´2Λq ´ 1 Rφφθθ “ expp´2Λq
`

expp2Λq ´ 1
˘

sin2 θ

Rθθtt “ ´r expp´2Λq
dΦ

dr
Rθθrr “ r expp´2Λq

dL

dr

36 Consider a 4D manifold with coordinates pt, x, y, zq and line element

ds2
“ ´p1` 2φqdt2 ` p1´ 2φqpdx2

` dy2
` dz2

q,

with |φpt, x, y, zq| ! 1. At an arbitrary point P with coordinates pt0, x0, y0, z0q, find a coordinate transfor-

mation to LIF. How does this frame accelerate with respect to the original coordinates? Do all of this to

first order in φ.

By inspection of the line element, we can see that the metric has components

pgαβq Ñ
pt,x,y,zq

¨

˚

˚

˚

˚

˚

˚

˚

˝

´p1` 2φq 0 0 0

0 p1´ 2φq 0 0

0 0 p1´ 2φq 0

0 0 0 p1´ 2φq

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

We want a transformation to a Minkowski spacetime, i.e.

Λα
1

αΛβ
1

βgα1β1 “ ηαβ .

Now, there may be multiple transformations which satisfy this, so we need only find one. Since both g and

η are diagonal, I assume that Λ is diagonal as well, and find its components.

η00 “ Λ01

0Λ01

0g0101 ηii “ Λi
1

iΛ
i1

igi1i1

´1 “ pΛ01

0q
2p´p1` 2φqq 1 “ pΛi

1

iq
2p1´ 2φq

Λ01

0 “ p1` 2φq´1{2 Λi
1

i “ p1´ 2φq´1{2

Since we know that φ is small, we can use the approximation p1` xq´1{2 “ p1´ x{2q `O
`

x2
˘

, to find

Λ01

0 « p1´ φq Λi
1

i « p1` φq

(39)
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Physics in a curved spacetime

7.6 Exercises

1 If Equation 7.3 were the correct generalization of 7.1 in a curved spacetime, what are the implications?

What would happen to the number of particles in a comoving volume of the fluid over time? May we

experimentally distinguish between Equations 7.2 and 7.3?

The number of particles would change proportionally to the square of the Ricci scalar, which corresponds

to the curvature of the manifold. Whether particles are created (`) or destroyed (´) would depend on the

sign of q in the equation.

We could set up some experiment which tests for a change in the number of particles in a moving fluid, in

various gravitational fields, to verify whether the RHS of the equation is non-zero.

2 Compute gαβ for the line element given by Equation 7.8, to first order in φ.

Based on the line element, we can infer that the metric is

pgαβq Ñ
pt,x,y,zq

¨

˚

˚

˚

˚

˚

˚

˚

˝

´p1` 2φq 0 0 0

0 p1´ 2φq 0 0

0 0 p1´ 2φq 0

0 0 0 p1´ 2φq

˛

‹

‹

‹

‹

‹

‹

‹

‚

pgαβq Ñ
pt,x,y,zq

¨

˚

˚

˚

˚

˚

˚

˚

˝

´p1` 2φq´1 0 0 0

0 p1´ 2φq´1 0 0

0 0 p1´ 2φq´1 0

0 0 0 p1´ 2φq´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

«

¨

˚

˚

˚

˚

˚

˚

˚

˝

´p1´ 2φq 0 0 0

0 p1` 2φq 0 0

0 0 p1` 2φq 0

0 0 0 p1` 2φq

˛

‹

‹

‹

‹

‹

‹

‹

‚

3 Calculate the Christoffel sybmols for the metric given by Equation 7.8, to first order in φ, assuming

φ “ φpt, x, y, zq.

I do the following with the assistance of the free computer algebra system Maxima. I used the exact form of

81
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the metric tensor, and then approximated the resulting Christoffel symbols to first order in φ.

Γttα “
Bφ

Bxα
1

1` 2φ
«
Bφ

Bxα
p1´ 2φq Γαtα “ ´

Bφ

Bt

1

1´ 2φ
« ´

Bφ

Bt
p1` 2φq

Γitt “
Bφ

Bxi
1

1´ 2φ
«
Bφ

Bxi
p1` 2φq Γtii “ ´

Bφ

Bt

1

1` 2φ
«
Bφ

Bt
p1´ 2φq

Γijj “ ´Γjij “ ´Γiii “
Bφ

Bxi
1

1´ 2φ
«
Bφ

Bxi
p1` 2φq

5

(a) In the case of a perfect fluid, verify that the spatial components of Equation 7.6 reduce to

9v ` pv ¨∇qv `∇p{ρ`∇φ “ 0

in the Newtonian limit and in the weak-field regime (the metric given by Equation 7.8).

Tµν “ pρ` pqUµUν ` pgµν

« ρUµUν ` pgµν

« mUµpnUνq ` pgµν

T iν « mU ipnUνq ` pgiν

T iν;ν « mrU ipnUνqs;ν ` rpg
iνs;ν “ mnUνU i;ν ` g

iνp;ν “ 0

ùñ 0 “ UνU i;ν ` g
iνp;ν{ρ

“ UνpU i,ν ` U
λΓiλνq ` g

iνp,ν{ρ

“ U0U i,0 ` U
jU i,j ` U

νUλΓiλν ` g
iνp,ν{ρ

“ γ
d

dτ
pγviq ` γvjpγviq,j ` U

νUλΓiλν ` g
iip,i{ρ

«
dvi

dτ
` vjvi,j ` pU

0q2Γi00 ` p1´ 2φqp,i{ρ

«
dvi

dτ
` vjvi,j ` φ,i ` p,i{ρ

rewriting this in vector form, we get the original equation.

(b) Now look at the time-component instead of the spatial component.

T 0ν “ pρ` pqU0Uν ` pg0ν « mU0pnUνq ` pg0ν

T 0ν
;ν “ mrU0pnUνqs;ν ` rpg

0νs;ν “ mnUνU0
;ν ` g

00p,ν “ 0

ùñ 0 “ UνU0
;ν ` g

00 9p{ρ

“ UνpU0
,ν ` U

λΓ0
λνq ` g

00 9p{ρ
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“ U0U0
,0 ` U

iU0
,i ` U

νUλΓ0
λν ` g

00 9p{ρ

«
1

2

dv2

dτ
`

1

2
vi

dv2

dxi
` UνU0Γ0

0ν ´ p1` 2φq 9p{ρ

«
1

2

dv2

dτ
`

1

2
vi

dv2

dxi
` UνU0Γ0

0ν ´ 9p{ρ

«
1

2

dv2

dτ
`

1

2
vi

dv2

dxi
` UνU0φ,ν ´ 9p{ρ

«
1

2

dv2

dτ
`

1

2
vi

dv2

dxi
` 9φ` viφ,i ´ 9p{ρ

(c) A metric is static if there exist coordinates such that ~e0 is timelike, gi0 “ 0, and gαβ,0 “ 0. Show from

Equation 7.6 that a static fluid (i.e. U i “ 0, p,0 “ 0, etc) obeys the relativistic equation of hydrostatic

equilibrium (Equation 7.40):

p,i ` pρ` pq

„

1

2
lnp´g00q



,i

“ 0.

We start by writing out Equation 7.6 as

Tµν;ν “ rpρ` pqU
µUνs;ν ` rpg

µνs;ν “ 0

“ rpρ` pqUµsUν;ν ` rpρ` pqU
νsUµ;ν ` U

νUµpρ` pq,ν ` g
µνp,ν “ 0

“ T 00
;0 ` T

ij
;j ` T

0i
;i ` T

i0
;0 “ 0

T 00
;0 “ rpρ` pqU

0sU0
;0 ` rpρ` pqU

0sU0
;0 ` U

0U0pρ` pq,0 ` g
00p,0

“ 2pρ` pqU0U0
;0

“ 2pρ` pqU0rU0
,0 ` U

λΓ0
0λs

“ 2pρ` pqrU0s2Γ0
00 “ 0

T ij;j “ rpρ` pqU
isU j;j ` rpρ` pqU

jsU i;j ` U
jU ipρ` pq,j ` g

ijp,j

“ gijp,j

T 0i
;i “ rpρ` pqU

0sU i;i ` rpρ` pqU
isU0

;i ` U
iU0pρ` pq,i ` g

0ip,i

“ rpρ` pqU0sU i;i “ pρ` pqU
0rU i,i ` U

λΓiiλs

“ pρ` pqrU0s2Γii0

“
1

2
rU0s2pρ` pqgiαpgαi,0 ` gα0,i ´ g0i,αq “ 0

T i0;0 “ rpρ` pqU
isU0

;0 ` rpρ` pqU
0sU i;0 ` U

0U ipρ` pq,0 ` g
i0p,0

“ rpρ` pqU0sU i;0 “ pρ` pqU
0rU i,0 ` U

0Γi00s

“
1

2
pρ` pqrU0s2giαpgα0,0 ` gα0,0 ´ g00,αq “ ´

1

2
pρ` pqrU0s2gijg00,j

“
1

2
pρ` pqgijg00,j{g00 “

1

2
pρ` pqgij lnp´g00q,j

Tµν;ν “ gijp,j `
1

2
pρ` pqgij lnp´g00q,j “ 0

“ p,j ` pρ` pq

„

1

2
lnp´g00q



,j

“ 0
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(d) This suggests that there is a relationship between g00 and expp2φq in the case of a static fluid in a

Newtonian potential. Show that Equation 7.8 and Exercise 4 are consistent with this.

In the Newtonian limit, the previous equation is unchanged when replacing ng00 with´ expp2φq, as ln
`

expp2φq
˘

,i
“

2φ,i, and

lnp´g00q,i “ lnp1` 2φq,i “
p1` 2φq,i

1` 2φ

“ 2φ,ip1` 2φq´1 « 2φ,ip1´ 2φq « 2φ,i.

I’m not really sure how to relate this to Exercise 4, as it relates φ,α to four-momentum, while this relates it

to pressure and density.

7 Consider the (i) Minkowski, (ii) Schwarzschild, (iii) Kerr, and (iv) Robertson–Walker metrics.

(a) Find the conserved components pα of a the four-momentum of a particle in free-fall.

For this I will use Equation 7.29:

m
dpβ
dτ

“
1

2
gνα,βp

νpα.

What this tells us is that if gαβ is independent of xµ, then pµ is constant along the trajectory.

For (i), the metric is independent of all coordinates pt, x, y, zq, and so all pα are conserved.

For (ii), the metric depends on coordinates r and θ, but not t and φ, so only pt and pφ are conserved.

For (iii) we have the same dependencies as (ii).

For (iv) there is an additional time dependence, and so only pφ is conserved.

(b) Use the metric for a flat spacetime in spherical polar coordinates to argue that the Schwarzschild and

Robertson–Walker metrics are spherically symmetric.

Our metric in (i) can be expressed in spherical polars as

ds2
“ ´dt2 ` dr2

` r2pdθ2
` sin2 θ dφ2

q.

The Schwarzschild metric can be obtained from this by multiplying dt2 by p1´ 2M{rq, and dividing dr2 by

it. This newly introduced term only introduces a new radial dependence (the r´1 term), not an angular one,

so it retains spherical symmetry.

The Robertson–Walker metric can be obtained by dividing dr2 by p1´kr2q, and then multiplying everything

except dt2 by R2ptq. Again, the p1´ kr2q term only introduces a radial dependence in its r2 term, and for a

given time t, R2ptq is a constant, so spherical symmetry is retained.

(c) For (i’) and (ii)–(iv), a geodesic which at one point has θ “ π{2 and pθ “ 0 (i.e. tangent to the equatorial

plane) conserves these quantities. For (i’), (ii), and (iii),use ~p ¨ ~p “ ´m2 to find pr as a function of m, other

conserved quantities, and known functions of position.

(i’)

~p ¨ ~p “ gαβp
αpβ “ gααpp

αq2 “ gttpp
tq2 ` grrpp

rq2 ` gθθp�
�7

0

pθq2 ` gφφpp
φq2
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“ ´pptq2 ` pprq2 ` r2
���

�:1
sin2

pθqppφq2 “ ´m2

ùñ pprq2 “ pptq2 ´ r2ppφq2 ´m2 “ gttpptq
2 ´ r2gφφppφq

2 ´m2 “ ´pptq2 ´ ppφq2 ´m2

ùñ pr “ ˘
b

´rpptq2 ` ppφq2 `m2s

(ii)

~p ¨ ~p “ gttpp
tq2 ` grrpp

rq2 ` gφφpp
φq2

“ ´p1´ 2M{rqpptq2 ` p1´ 2M{rq´1pprq2 ` r2���:
1

sin2 θppφq2 “ ´m2

ùñ pprq2 “ p1´ 2M{rqrp1´ 2M{rqpptq2 ´ r2ppφq2 ´m2s

“ ´p1´ 2M{rqrp1´ 2M{rqpptq
2 ` ppφq

2 `m2s

(iii) This metric gets a bit messy, so I will keep things more abstract. First, I will simplify the metric,

utilizing the fact that θ “ π{2.

ds2
“ ´

∆´ a2

r2
dt2 ´ 2

2Ma

r
dtdφ`

pr2 ` a2q2 ´ a2∆

r2
dφ2 `

r2

∆
dr2

` r2dθ2

gtt “ ´
∆´ a2

r2
; grr “

r2

∆
; gθθ “ r2; gφφ “

pr2 ` a2q2 ´ a2∆

r2
; gtφ “ ´

2Ma

r
,

λ ” a6 ´ 2pD ´ r2qa4 ` pr4 ´ 4M2r2 ´ 2Dr2 `D2qa2 ´Dr4

gtt “ r2pa4 ´ pD ´ 2r2qa2 ` r4q{λ; grr “
D

r2
; gθθ “

1

r2
; gφφ “ r2pa2 ´Dq{λ; gtφ “ 2aMr3{λ,

~p ¨ ~p “ gttpp
tq2 ` grrpp

rq2 ` gφφpp
φq2 ` 2gtφpp

tpφq “ ´m2

pr “ ˘
b

´grrrgttpptq2 ` gφφppφq2 ` 2gtφpptpφq `m2s

pt “ gtαpα “ gφφpt ` g
tφpφ

pφ “ gφαpα “ gφφpφ ` g
tφpt

(d)

When k “ 0, the line element and metric become

ds2
“ ´dt2 `R2ptqrdr2

` r2pdθ2 ` sin2 θdφ2qs

gtt “ ´1; grr “ R2ptq; gθθ “ R2ptqr2; gφφ “ R2ptqr2 sin2 θ.

Equation 7.29 with β “ r then becomes

m
dpr
dτ

“
1

2
gνα,rp

νpα “
1

2
rgtt,rpp

tq2 ` grr,rpp
rq2s.

Since gtt,r “ grr,r “ 0, the RHS becomes zero, and so

m
dpr
dτ

“ 0 ùñ pr is conserved.

8 For a coordinate system where gαβ,µ “ 0:
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(a) Show that T νµ;ν “ 0 becomes
1

?
´g
p
?
´gT νµ qν “ 0.

For this, I will make mathematicians cry, and go from the solution backwards to the starting point. So I

expand the final expression, first using the Leibniz rule:

T νµ,ν `
p
?
´gqν
?
´g

T νµ “ 0,

and then using Equation 6.40:

T νµ,ν ` Γααν “ 0.

Just pretend I did that backwards. Next I expand T νµ;ν , to show that the above expression makes it zero.

T νµ;ν “ T νµ,ν ` T
α
µ Γναν ´ T

ν
α Γαµν

“ T νµ,ν ` T
ν
µ Γανα ´ T

ν
α Γαµν .

Note that the positive terms are just the expression from before, which we showed was zero, so we’re left

with

T νµ;ν “ T να Γαµν .

Now we expand this

T νµ;ν “ ´
1

2
T να g

αβpgβµ,ν `���gβν,µ ´ gµν,βq

“ ´
1

2
T νβpgβµ,ν ´ gµν,βq “ ´

1

2
T pνβqArνβsµ “ 0.

(b) Suppose Tαβ is zero except in a bounded region of the space-like hypersurface x0 “ constant. Show that

Equation 7.41 implies that
ż

x0“const

T νµ
?
´gnν d3x

does not depend on x0, so long as nν is the unit normal to the hypersurface.

Using Equation 7.41 and the differential in Equation 6.18, we take the integral

ż

1
?
´g
p
?
´gT νµ qν

?
´g d4x “

ż

p
?
´gT νµ q,ν d4xd4x .

Now we use Equation 6.44:

ż

p
?
´gT νµ q,ν d4xd4x “

¿

?
´gnνT

ν
µ d3S

“

ż

x0“const

?
´gnνT

ν
µ d3x

(c) Now consider flat Minkowski space with a global inertial frame in spherical polar coordinates. Show that,

from part (b), we have

J “

ż

t“const

T 0
φ r

2 sin θ dr dθdφ,
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which is independent of t. This is the system’s total angular momentum.

Since we are in flat Minkowski space, the unit-normal one form has components ñÑ p1, 0, 0, 0q, so only the

T 0
µ term is retained. We also have x0 Ñ t, so we can write the expression from (b) as

ż

t“const

?
´gT 0

µ d3x .

We also know that
?
´g d3x in spherical polars is r2 sin θ dr dθdφ, so we can write this as

ż

t“const

T 0
µ r

2 sin θ dr dθdφ.

Taking the φ component of T 0
µ , we get something which we call J :

J “

ż

t“const

T 0
φ r

2 sin θ dr dθdφ.

(d) Now express the previous integral in terms of the components of Tαβ on the Cartesian basis, ultimately

arriving at

J “

ż

pxT y0 ´ yT x0qdxdy dz

J “

ż

t“const

T 0
φ r

2 sin θ dr dθdφ

“

ż

t“const

ΛαφT
0
α r

2 sin θ d3x

“

ż

t“const

pΛxφT
0
x ` ΛyφT

0
y ` ΛzφT

0
z qd3x

“

ż

t“const

pp´r sin θ sinφqT 0
x ` pr sin θ cosφqT 0

y ` p0qT
0
z qd3x

“

ż

t“const

pxT 0
y ´ yT

0
x qd3x

“

ż

t“const

pηyyxT
0y ´ ηxxyT

0xqd3x

“

ż

t“const

pxT 0y ´ yT 0xqd3x

10

(a) Show that if the vector field ξα satisfies Killing’s equation,

∇αξβ `∇βξα “ 0,

then pαξα is constant along a geodesic.

If pαξα is constant along a geodesic, then pαξα;β “ 0, so we simply have to show that this follows from

Killing’s equation.

Killing’s equation can be rewritten as

ξβ;α ` ξα;β “ 0 ùñ ξβ;α “ ´ξα;β .
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Now we combine this with the geodesic equation,

pαξβ;α “ ´p
αξα;β “ 0.

And there we have it!

(b) Find ten Killing fields for Minkowski spacetime.

Since the basis vectors in Minkowski spacetime are all constant, ∇β~eα “ 0, and so we get four from ~et, ~ex,

~ey, ~ez. According to part (c), we get a Killing field from any constant linear combination of these four, and

so from that we may create an infinity of Killing fields. Schutz’s solutions manual also lists expressions such

as x~et ´ t~ex as Killing fields, which are linear combinations, but the coefficients are non-constant. I give an

attempted derivation below, although at the very last step it turns out not to work, and I pretend it does

anyway. I claim that the general form of Schutz’s expressions is: xα~eβ ´ x
β~eα.

∇αpx
α~eβq ´∇αpx

β~eαq `∇βpx
α~eβq ´∇βpx

β~eαq “ xα;α~eβ ´ x
β

;α~eα ` x
α

;β~eβ ´ x
β

;β~eα

“ ~eβ ´ ~eα ´ x
β
,α~eα ` x

α
,β~eβ

“ ~eβ ´ ~eα ´ Λβα~eα ` Λαβ~eβ

(magnets at work here)

“ ~eβ ´ ~eα ´ ~eβ ` ~eα “ 0

(c) Prove that any constant linear combination of two Killing fields ~ξ and ~η is itself a Killing field.

∇µξν `∇νξµ “ 0

∇µην `∇νηµ “ 0

∇µpαξν ` βηνq `∇νpαξµ ` βηµq

“α∇µξν ` β∇µην ` α∇νξµ ` β∇νηµ

“αp∇µξν `∇νξµq ` βp∇µην `∇νηµq “ 0

(d) Show that the Lorentz transforms of the fields in (b) are also Killing fields.

Applying a Lorentz transform Λµν we get the expression Λµν
`

xα~eβ ´ x
β~eα

˘

.

∇αrΛ
µ
νpx

α~eβ ´ x
β~eαqs `∇βrΛ

µ
νpx

β~eα ´ x
α~eβqs

“Λµν;αrpx
α~eβ ´ x

β~eαq ` px
β~eα ´ x

α~eβqs

“Λµν;αrx
α~eβ ´ x

α~eβ ` x
β~eα ´ x

β~eαs “ 0

(e) Use the results in Exercise 7(a) to find Killing vectors for the non-Minkowski metrics listed in (ii)–(iv).

(ii) Since the conserved quantities are pt and pφ, then the Killing fields are any constant linear combinations
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or Lorentz transforms of ~et, ~eφ, and φ~et ´ t~eφ.

(iii) Same as (ii).

(iv) Only pφ is conserved, so any constant multiple of ~eφ is a Killing field.
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Chapter 8

The Einstein field equations

8.6 Exercises

3

(a) Calculate in geometrized units:

(i) the Newtonian potential of the Sun at its surface

φ “ ´GM@{R@ « ´1.476ˆ 103 m{6.960ˆ 108 m « ´2.12ˆ 10´6

(ii) the Newtonian potential of the Sun at the radius of Earth’s orbit

φ “ ´GM@{1 AU « ´1.476ˆ 103 m{1.496ˆ 1011 m « ´9.866ˆ 10´9

(iii) the Newtonian potential of the Earth at its surface

φ “ ´GMC{RC « ´4.434ˆ 10´3 m{6.371ˆ 106 m « ´9.660ˆ 10´10

(iv) the Earth’s orbital velocity

Here I use the result from part (c), and find that

v “
a

´φ « 9.933ˆ 10´5

(b) If the potential due to the Sun at Earth’s orbital radius is greater than the Earth’s potential at its surface

(as is shown above), then why do we feel the Earth’s gravity more than the Sun’s?

We don’t feel the potential directly, we feel the gravitational acceleration it produces. Acceleration is obtained

from the potential via a “ ´∇φ, and in the case of a circular orbit in a Newtonian potential:

a “ ´∇φ “ ´
B

Br
p´GM{rq “ ´Gm{r2 “ φ{r.

91
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So in the two cases mentioned, we need to divide by the radius once more, to obtain the acceleration.

a@ “ φ@{1 AU « ´6.595ˆ 10´20 m´1

aC “ φC{RC « ´1.092ˆ 10´16 m´1

As you can see, the acceleration due to the Earth is greater by a factor of 104.

(c) Show that a circular orbit in a Newtonian potential has an orbital velocity v2 “ ´φ.

We saw above that a “ φ{r, and we also know that centripetal acceleration is given by a “ ´v2{r. Equating

the two we get v2 “ ´φ.

8

(a) Show that Rαβµν “ ηασRαβµν `Oprhαβs2q.

Rαβµν “ gασRσβµν “ pη
ασ ` hασqRσβµν “ ηασRσβµν ` h

ασRσβµν

hασRσβµν “
1

2
hασphσν,βµ ` hβµ,σν ´ hσµ,βν ´ hβν,σµq “ Oprhαβs2q

(b) Find Rαβ to first order in hµν .

Rαβµν « ηασRσβµν

δµαR
α
βµν « Rβν « δµαη

ασRσβµν « ηµσRσβµν

(c) Show that gαβR “ ηαβη
µνRµν `Oprhαβs2q.

R “ gµνRµν “ pη
µν ` hµνqRµν “ ηµνRµν ` η

µγηνλRµν “ ηµνRµν `Oprhαβs2q

gαβR “ gαβη
µνRµν `Oprhαβs2q “ pηαβ ` hαβqηµνRµν `Oprhαβs2q “ ηαβη

µνRµν `Oprhαβs2q

(d) Use this to show that Gαβ “ Rαβ ´
1
2ηαβR.

Gαβ “ Rαβ ´
1

2
gαβR “ Rαβ ´

1

2
pηαβη

µνRµνq “ Rαβ ´
1

2
ηαβR

(e) Now use this to simplify the calculation of Equation 8.32.

I got stuck here. I began by expanding the expression in (d) using the results from previous sections, shown

in Figure 8.1a. Then I expanded Equation 8.32, to get it in a more similar form, in Figures 8.1b and 8.1c.

I did this with the hope of matching terms in the two equations, but was only able to match one. I believe

something that would help me get further is Equation 8.33, h̄µν,ν “ 0.

9

(a)
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(a)

(b) (c)

Figure 8.1: Incomplete solution to Problem 8.8 (e)

I start by making a slight rewrite of Equation 8.32, changing the second h̄ term.

ηαβh̄
,µν

µν “ ηαβη
µαh̄ ,ν

µν,α “ h̄ ,ν
βν,α

So now the Einstein tensor can be written as

Gαβ “ ´
1

2
rh̄ ,µ
αβ,µ ` h̄ ,ν

βν,α ´ h̄ ,µ
αµ,β ´ h̄ ,µ

βµ,α `Oprhαβs2qs.

For G00 we then have

G00 “ ´
1

2
rh̄ ,µ

00,µ ` h̄ ,ν
0ν,0 ´ h̄ ,µ

0µ,0 ´ h̄ ,µ
0µ,0 `Oprh00s

2qs

“ ´
1

2
rh̄ ,µ

00,µ ´ h̄ ,µ
0µ,0 `Oprh00s

2qs

“ ´
1

2
rph̄ ,0

00,0 ` h̄ ,i
00,i q ´ ph̄

,0
00,0 ` h̄ ,i

0i,0 q `Oprh00s
2qs

“ ´
1

2
rh̄ ,i

00,i ´ h̄
,i

0i,0 `Oprh00s
2qs,

which contains no second time derivatives. For G0i I encountered a problem:

G0i “ ´
1

2
rh̄ ,µ

0i,µ ` h̄ ,ν
iν,0 ´ h̄ ,µ

0µ,i ´ h̄ ,µ
iµ,0 `Oprh0is

2qs

“ ´
1

2
rh̄ ,µ

0i,µ ´ h̄ ,µ
0µ,i `Oprh0is

2qs

“ ´
1

2
rph̄ ,0

0i,0 ` h̄ ,j
0i,j q ´ h̄

,µ
0µ,i `Oprh0is

2qs,

which retains a second time derivative in the h̄ ,0
0i,0 term.
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(b)

According to Schutz’s solution it is not a contradiction, due in part to Equation 8.33. I don’t fully understand

the reason, though.

11 Write the gauge transformation and Lorentz gauge condition in four-tensor notation for Maxwell’s equa-

tions. Draw an analogy with linearized gravity.

First we rewrite φ Ñ φ ´ Bf{Bt as ´A0 Ñ ´A0 ´ f,0, and cancelling the negatives we get A0 Ñ A0 ` f,0.

Combining this with Ai Ñ Ai`f,i, it is obvious that the gauge transformation generalizes to Aα Ñ Aα`f,α.

The Lorentz gauge condition is just slightly less obvious. We start by noting that A0 “ ´φ, and therefore

(in Minkowski space) A0 “ η0µAµ “ g00A0 “ p´1qp´φq “ φ. Then the Lorentz gauge condition becomes

A0
,0 `A

i
,i “ Aα,α “ 0.

13 Give a physical justification for
∣∣T 00

∣∣ " ∣∣T 0i
∣∣ " ∣∣T ij∣∣ in a Newtonian system.

The first inequality is easy to see. T 00 “ E{V “ p0{V , and T 0i “ pi{V . In the Newtonian limit,
∣∣p0

∣∣ " ∣∣pi∣∣,
and so it follows that

∣∣T 00
∣∣ " ∣∣T 0i

∣∣.
The second inequality is less obvious. In the Newtonian limit, forces must be relatively small, or else objects

would be accelerated to relativistic speeds. By this argument, the stresses must also be relatively small, and

so T 0i " T ij .

17

(a) First I need to convert the orbital period into meters.

T “ 200 daysˆ
24 hours

1 day
ˆ

3600 seconds

1 hour
ˆ c « 5.18ˆ 1015 m

Then I use the potential to find the speed, which I relate to the circumference and orbital period, and solve

for the mass.

φ “ ´GM{r

v2 “ ´φ

M “ v2r{G “ C3{p2πT 2Gq « p6ˆ 1011 mq3{p2πp5.18ˆ 1015 mq2Gq

« 1.281ˆ 103 mˆ
1M@

1.476ˆ 103 m
« 0.868M@

(b)

Using the above formula, I get a distribution of mass estimates, shown in Figure 8.2. Closer to the black hole,

the Newtonian approximation breaks down, and the “effective mass” blows up. Far from the black hole, we

can see that the effective mass is in agreement for all of the sattelites, and so the Newtonian approximation

is working again. Thus, I use the furthest sattelite to find that the black hole’s mass is 68M@.
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Figure 8.2: Black hole mass estimates in Problem 8.17, as a function of sattelite circumference.


