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Chapter 1

Special relativity

1.1 Fundamental principles of special relativity (SR) theory
Special relativity can be summarized by two fundamental postulates:

1. The principle of relativity (Galileo), which states that no experiment may measure the absolute velocity

of an observer.

2. The universality of the speed of light (Einstein), which states that the speed of light is constant when

measured from any inertial reference frame.

1.2 Definition of an inertial observer in SR

When we say “observer”, what we really mean is a coordinate system. Thus an inertial observer is a

coordinate system that meets the following 3 criteria:

1. The distance between two spatial points P; and Ps is independent of time.
2. Time is synchronized and moves at the same rate at all spatial points.

3. At any constant time, space is Euclidean.

It follows from these criteria that the observer must be unaccelerated.

1.3 New units

1

The speed of light, ¢, is approximately 3.00 x 108 ms~! in SI units. However, these units predate relativity,

and are very inconvenient. Life becomes easier if we define our units around ¢, such that ¢ = 1.
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This can be done by repurposing the meter as a measure of time as well. We thereby define the meter as

“the time it takes light to travel 1 meter”. Thus the speed of light becomes

1m
c=—.
Im

Indeed, it turns out in SR that time is most conveniently measured in distance (¢ = 3.00 x 10'° cm), and in

GR mass is as well (G/c™2? = 7.425 x 1072 cmg™1).

1.4 Spacetime diagrams
1.5 Construction of the coordinates used by another observer

1.6 Invariance of the interval

For two nearby events, we can define the invariant interval, defining a 4D Minskowski spacetime:

ds® = —(cdt)? + dz? + dy? + d2?,

or when we set ¢ = 1:

ds? = — dt? + da? + dy? + d22. (Schutz 1.1)

This notation can be simplified be defining

3 3
N = diag(—1,1,1,1) = :ds? = Z Z Ny dat dz”
0 pn=0v=0

0
0
1
0 0

o O = O
_ o o O

When we want to find d5%, we can consider the fact that each of its components, dz®, is a linear combination

of the components of ds?,
3
dz® = Z Ao’
B=0

Now, when we consider the square of dz®, the cross terms make it a quadratic function. Since the sum of

four quadratics (the four dz®’s) is also a quadratic, we can write d5° as

3 3
ds = > > Myp(da®)(dz?) (Schutz 1.2)
a=03=0
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If are talking about light, ds®* = 0, and so we can say
ds? =0=—dt? + d&r’® = dt =dr
Now by looking at Exercise 8 in Section 1.14, we see that
ds? = Myo(dr)?

3
+2 ZMm dz® | dr

i=1

+ i Zgl M;; dz' da? | (Schutz 1.3)
i=1j=1
where
Mo, =0 (Schutz 1.4a)
and
M;; = —(Moo)dij, (Schutz 1.4b)

where d;; is the Kronecker delta.

1.7 Invariant hyperbolae

1.8 Particularly important results

1.9 The Lorentz transformation

1.10 The velocity-composition law
1.11 Paradoxes and physical intuition
1.12 Further reading

1.13 Appendix: The twin ‘paradox’ dissected

Consider two twins, Joe and Ed. Joe goes off in a straight line traveling at a speed of (24/25)c for 7 years,
as measured on his clock, then instantaneously reverses and returns at half the speed. Ed remains at home.
When they return, what is the difference in ages between Joe and Ed?

T =Tyr. t1 = 111, where y; = [1 — (3—;)2]_1/2. So t; = 25yr.

to = 2t; = H0yr.
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—1/2
T = t2’72_1, where v; = [1 — (%)2] . So 7o = 24/481yr ~ 44yr. Finally, 7 = 74 + 72 ~ 51lyr, and
t =11 +to = 75yr, so Ed ages t — 7 ~ 24 years more than Joe.

1.14 Exercises

1 Convert the following to units in which ¢ = 1, expressing everything in terms of m and kg.
(Note that c=1 = 1~ 3 x 108ms™ ! ~ (3 x 10%)"Im~1!s
(a) 10J

10J =10Nm = 10kgm?s 2 ~ 10kgm?s 2 - ((3 x 108)'m~'s)?
1
~ 10kg(3 x 108)72 = 10kg(9 X 10—16> ~1.11 x 10" kg
(b) 100 W

100W = 100kgm?s™> ~ 100kgm?s™ - ((3 x 10%) " 'm™~'s)?
100

~ 100kgm (373 x 107%1) = >

x 107%*kgm ™ ~ 3.7 x 107 kgm ™!

2 Convert the following from natural units (¢ = 1) to SI units:

(a) A velocity v = 1072
v=10"2=10"%c=10""3 x 10°ms™' =3 x 10°ms~!
(b) Pressure P = 10*kgm~3.

P =10"Ykgm ™3 ~ 10kgm3(3 x 108 ms™1)?

~ 10%kgm™3(9 x 10" m?s7?) = 9 x 103 Nm?

3 Draw the t and x axes of the spacetime coordinates of an observer O and then draw:

(a) The world line of O’s clock at x = 1 m.

4 Write out all the terms of the following sums, substituting the coordinate names (¢, x,y, z) for (2, !, 22, 23):
(a) 322 Vadz® = Vodt + Vi da + Vady + Vadz.

(b) 37, (da?)? = dz? + dy? + dz* = dr.

5

(a) Use the spacetime diagram of an observer O to describe the following experiment performed by O. Two
bursts of particles of speed v = 0.5 are emitted from x = 0 at t = —2m, one traveling in the +z direction
and the other in the —x direction. These encounter detectors located at x = +2m. After a delay of 0.5 m of
time, the detectors send signals back to x = 0 at speed v = 0.75.

See figure below



1.14. EXERCISES 9
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Exercise 3

(b) The signals arrive back at & = 0 at the same event. (Make sure your spacetime diagram shows this!) From
this the experimenter concludes that the particle detectors did indeed send out their signals simultaneously,
since he knows they are equal distances from x = 0. Explain why this conclusion is valid.
Assuming he knows the signals traveled with equal speeds, and the detectors are an equal distance away,
then they must have been emitted simultaneously, in order for them to arrive at = 0 simultaneously.
(c) A second observer O moves with speed v = 0.75 in the —z direction relative to O. Draw the spacetime
diagram of O and in it depict the experiment performed by O. Does O conclude that particle detectors sent
out their signals simultaneously? If not, which signal was sent first.
See the diagram below. On it, I have drawn lines #o¢ and fright (note that they are parallel to the & axis).
As you can see from the plot, the left emission occurs before the right emission.
(d)
Using O, the distance is

As? = Az? = 16 m?.
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Using O, we first need to find T(qp) and tq,p}- We use the Lorentz transformation to do this.

t=(t—vx)
z = y(x — vt)
Using this, we find
_ 16T AT
fo= —t By = —
7 7
x, = _31\ﬁ T = ﬂ
“T 14 T 14

This gives us a distance of

A5 = —(AD)? + (Az)* = 16m?,

which is of course what we expect.

|

S

dy
Yout
Yin
Eleft

tright

-10 ‘
~10 -5 0 5 10

z(m)
Exercise 5

6 Show that Equation (Schutz 1.2) contains only M,z + Mg, when o # 3, not M,z and Mgz, independently.

Argue that this enables us to set M,z = Mg, without loss of generality.
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When we expand the summation in (Schutz 1.2), there is no point where
d5® = ...+ Moo (dz®)? + Muo(dz®)? + ...

occurs, because a double summation only contains M, once. If it did, we could absorb the two M,z terms
into a single one. Therefore we can assert the first point.
Now we consider the second point. If we expand the summation, assuming now that an M, and Mga, term

only occur when « # 3, then we see

d5® = ... + Mag(dz®)(dz?) + Mpa (dz?)(dz®) + ...
=i+ (Myp + MBQ)[(dx")(dxﬁ)] +...

— .+ X[(de) (@) +

Now, what really matters in this summation is the value of X = M,g + Mg, not the individual values of
Mg and Mga,. Therefore we can choose, without loss of generality, M, = Mg, = X/2, thereby asserting
the second point.

7 In the discussion leading up to Equation (Schutz 1.2), assume that the coordinates of O are given as the

following linear combinations of those O:

t = at + B,
T = ut+ vz,
g = ay,
Z = bz,

where o, 3, i1, v, a, and b may be functions of the velocity # of O relative to @, but they do not depend on

the coordinates. Find the values of Mg of Equation (Schutz 1.2).

ds? = —(dt)? + (dz)? + (dg)? + (dz)?
= —(adt+ Bdz)?* + (udt + vdz)® + (ady)® + (bdz)?
= —a?dt* —apdtde — 2 da® + p? dt? + prdtde + v? da? + a® dy® + b2 d2?

= (u? — ) dt® + (v — aB)dtdz + (V2 — f2)da® + a® dy® + b? d2?

Moo = p* — o?

Moy = Mo = /W;Oéﬂ
My =v* -2

Mso = a®
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and all other M,z = 0.

8

(a) Derive Equation (Schutz 1.3) from (Schutz 1.2) for general M.
Equation (Schutz 1.3) is just an expansion of the summation in (Schutz 1.2).

We start by taking out the de? term, which corresponds to o = 8 = 0, which gives us
ds® = Moo(dt)® + ...,

now we use the equivalence of d¢ and dr to make the substitution
d5® = Moo(dr)? + ...

For the middle terms, we use the fact that M,g = Mpg,, and look at only the terms where one of o and 3
is zero. The symmetry means we can write My, = Mo, and pull out a 2 because there are twice as many

terms, giving us

d§2 = Moo(dr)z

3
+ 2 Z MOZ(dl‘Z)(dt)

i=1

+ ...
Now we use the equivalence of dt and dr once again, and pull the term out of the sum, giving us
ds* = Myo(dr)?

3
+2 Z MOi dl‘l dr
i=1

+ ...

Finally, we simply include the terms which have not yet been accounted for, which are all the spacial-only

terms, which arrives us back at Equation (Schutz 1.3):
d5% = Moo (dr)?

3
+2 Z Mo; dz* | dr

i=1

3 3
+ Z Z Mij dz?da? .

i=1j=1

(b) Since d5® = 0 in Equation (Schutz 1.3), for any da?, replace dz’ with —dz?, and subtract that result
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from the original equation. This will establish that My; = 0.
ds* = Myo(dr)?

3
-2 ZMOi da |dr
i=1

3 3
+ 33 M dat da?

i=1j=1

ds?—ds?=0=0 T
3 .
+4| > My da' |dr
=1
3 3

+W
1=1j=1

3
0= /1 Z MOi d.ﬁz
i=1

Now there are two possibilities. In one case, dz® = 0, but that is a trivial solution and in general is not true.

The other case is that My; = 0, which means we can simplify Equation (Schutz 1.3) to
d§2 = Moo(dT’)Q

3 3
+ 30> My dat da?
i=1j=1
(¢) Use the result of part (b) with d5% = 0 to establish Equation (Schutz 1.4b).

3 3
d§2 =0= ]\400((1’/‘)2 + Z Z Mij dz’ da?

i=1j=1

3 3
> —]\400((1’!‘)2 = Z Z Mij dxl dxj’
i=1j=1
now if we expand (dr)?, we see that there can only be non-zero M;; when i = j, and so

—Moo((dxz) + (dy?) + (sz)) = Z M;;(da*)?

— —(Moo)dij = M;j,

which is simply Equation (Schutz 1.4b).
9 Explain why the line PL in Figure 1.7 is drawn in the manner described in the text.

10 For the pairs of events whose coordinates (¢, x,y, z) in some frame are given below, classify their separa-

tions as timelike, spacelike, or null.
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(a) (0,0,0,0) and (—1,1,0,0):
ds® = —(0+1)2+(0—-1)2+(0-02+(0-00>=-1+1+0+0=0 = null

(b) (1,1,—1,0) and (—1,1,0,2):

ds® = —(1+ 12+ (1 =12+ (-1-02+(0—-2)2=-4+0+1+4=1 = spacelike
(¢) (6,0,1,0) and (5,0,1,0):

ds® = —(6—-5)2+(0-02+(1-1)>+(0-00=-1+0+0+0=—1 = timelike
(d) (-1,1,—1,1) and (4,1, —1,6):

ds? = —(-1 =42+ (1 =12+ (-1 +1)?+(1-6)2=-254+0+0+25=0 — null

11 Show that the hyperbolae —t2 + 22 = a? and —t? + 22 = —b? are asymptotic to the lines t = +z,
regardless of a and b.

We will generalize ¢ and —b with a new constant, o € R, and so we have: —t? + 22 = o®. Now if we solve
for t, we get t = +4/22 — a2,

Now take the limit of ¢ as ¥ — o0 (or —o0, they are equivalent since x is real and squared), which gives us:

lim ¢ = lim ++/2% — a2 = +V722 = 4.

r—00 r—00

Note that we dropped the o? term in the limit, as it was being subtracted from a number approaching
infinity, and was therefore negligible.

12

(a) Use the fact that the tangent to the hyperbola DB in Figure 1.14 is the line of simultaneity for O to
show that the time interval A€ is shorter than the time recorded on O’s clock as it moved from A to B.

If we look at the figure, we see that AD and AB lie along the same hyperbola. This means that when O
measures dt = AD, and O measures df = AB, the two measurements are the same. Since dt = A€ is clearly
shorter than dt = AD, then dt = AD < dt = AB.

(b) Calculate that

(ds®)ac = (1 —2v?)(ds*) as

(ds?)ac = —(dt)%e

(d82)AB = (d§2)AB

= —(d0)%s
= —(y(dt —vda))? = —(y(dt —v-0))* = =(vdt)* = +*[~(dt)*]
_ 72(d52)AC (d52)AC
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- (dsz)Ac = (1 — UQ)(dsz)AB

13 The Half-life of the elementary particle called the m-meson (or pion) is 2.5 x 10~ s when the pion is at
rest relative to the observer measuring its decay time. Show, by the principle of relativity, that pions moving

at speed v = 0.999 must have a half-life of 5.6 x 10~ 7 s, as measured by an observer at rest.

g 251075
T 1= 00992

14 Suppose the velocity v of O relative to O is small, |[v| « 1. Show that the time dilation, Lorentz

~ 559 x 10 7s

contraction, and velocity-addition formulae can be approximated by respectively:

(a) dt ~ (1 + 30?)dt

o= Y <1/2>xk =1 )+ W2 D e og L

=\ E 2!
—1 9= 1 2 _
de =7~ dx%(l—f})dx
(c) WaW +v—Wu(W +v) (with |IW] « 1 as well)
W+

! _ _ —1
W_1—|—Wv (W +0)(1 + Wo)

RS B 1 1 :
(1+ Wo) ];O ( A )(Wv)k =1-Wov+ 3 1(1+ 1) (Ww)? - 5 11+ D1 +2)(Wo)d +...

~1—Wo+ (Wo)?
W (W+v)(1—Wo+ (Wo)2) =W +v—WoW +v) + (Wo)2(W + v)

~W+v—WouW +v)

What are the relative errors in these approximations when |v| = W = 0.17
TODO
15 Suppose that the velocity v of O relative to O is nearly that of light, |[v| =1 —¢, 0 < ¢ « 1. Show that

the same formulae of Exercise 14 become

(a) dt ~ di /+/2¢
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v=1-c = 1 =(1-¢)2=1-2+¢£*

= 1U2=1(12€+€2)=2€€2=2€<1

)

DN ™

(b) dz ~ dz+/2¢

v=1-¢c = ¥ =(1-¢)2=1-2+¢*
2
)2 12
71/2—(1—2)2)1/2—(25(1—2)) —«z?(l_) ~ Ve

dz =~71dz ~ dtV2e

— 1—112—1—(1—2€+52)—25—52—25<1—€)

)W arx1—c(1-W)/(1+W)

TODO

What are the relative errors on these approximations when € = 0.1 and W = 0.97

TODO

16 Use the Lorentz transformation, Equation 1.12, to derive (a) the time dilation, and (b) the Lorentz
contraction formulae. Do this by identifying pairs of events where the separations (in time or space) are
to be compared, and then using the Lorentz transformation to accomplish the algebra that the invariant
hyperb b olae had been used for in the text.

(a) To derive the time dilation formula, we choose two events that occur at = ¢, and times ¢; and ¢5. Thus,
from O’s frame, the time elapsed between these two events is At = t5 — t1, and the distance between them
is Az = 0. Another observer, O, moves with some velocity v relative to O. As it passes through the lines
t =t; and t = tq, its clock moves forward by a time A7 = #, — ;. We now use the Lorentz transformation

to write A7 in terms of O’s coordinates.

AT =19 — 1 = 'y[(tg —vzg) — (t — vml)] = 'y[(tg —t1) + (vo1 — vxg)]
= vy[At + vAz] = y[At + v - 0]

= vyAt

and thus we have arrived at the formula for time dilation.

(b) To derive the Lorentz contraction formula, we take a slightly different approach. In the O frame, a stick
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lies parallel to z, such that its length ¢ = x5 — z1. In this frame, the world lines of the two ends of the stick
form vertical lines. Another observer, O, moves with a velocity v, relative to O. Two events, A and B occur
on either end of the stick, such that O observes the two events to be simultaneous. Thus, from the O frame,
the events are located a distance AZ = £ apart, and Af = 0. However, from the O frame, the events occur

a distance Az = ¢ apart, and a time separation At # 0.

= T2 —T1 = ’}/[(fz — ’U{g) — ((fl — 'Ut_l)] = ’)’[(.’EQ - "fl) + ’U(El — tz)] = ’}/4

2SS ~

17 A lightweight pole, 20 m long, lies on the ground next to a barn 15m long. An Olympic athlete picks up
the pole, carries it far away, and runs with it toward the end of the barn at a speed 0.8. His friend remains
at rest, standing by the door of the barn. Attempt all parts of this question, even if you can’t answer some.
(a) How long does the friend measure the pole to be, as it approaches the barn?

We use the Lorentz contraction equation to find the length the friend measures.
l=10/y=0y/1—2v2=20my/1-0.8=12m

(b) The barn door is initially open and, immediately after the runner and pole are entirely inside the barn,
the friend shuts the door. How long after the door is shut does the front of the pole hit the other end of the
barn, as measured by the friend? Compute the interval between the events of shutting the door and hitting
the wall. Is it spacelike, timelike, or null?

From the runner’s point of view, we must consider the length contraction of the barn

(c) In the reference frame of the runner, what is the length of the barn and the pole?

(d) Does the runner believe that the pole is entirely inside the barn when its front hits the end of the barn?
Can you explain why?

(e) After the collision, the pole and runner come to rest relative to the barn. From the friend’s point of view,
the 20 m pole is now inside a 15m barn, since the barn door was shut before the pole stopped. How is this
possible? Alternatively, from the runner’s point of view, the collision should have stopped the pole before
the door closed, so the door could not be closed at all. Was or was not the door closed with the pole inside?
(f) Draw a spacetime diagram from the friend’s point of view and use it to illustrate and justify all your
conclusions.

18

(a) The Einstein velocity-addition law, Equation 1.13, has a simpler form if we introduce the concept of the

velocity parameter u, defined by the equation

v = tanhu.
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Notice that for —o0 < u < o0, the velocity is confined to the acceptable limits —1 < v < 1. Show that if
v = tanhu

and

w = tanh U,

then Equation 1.13 implies
w’ = tanh(u + U).

This means that velocity parameters add linearly.

There exists an identity:
tanh(x) + tanh(y)

h = :
tanh(z +y) 1 + tanh(z) tanh(y)

If we simply use z = uw and y = U, then we arrive at

_ tanh(u) +tanh(U)
tanh(u +U) = 1 + tanh(u) tanh(U) v

(b) Use this to solve the following problem. A star measures a second star to be moving away at speed
v = 0.9. The second star measures a third to be receding in the same direction at 0.9. Similarly, the third
measures a fourth, and so on, up to some large number N of stars. What is the velocity of the Nth star
relative to the first? Give an exact answer and an approximation useful for large N.

Let w be the velocity of the Nth star relative to the original star, which we will call star 0. We will use
an induction proof to find an expression for w”. The base case is trivial, w® = 0, as the star does not move

1

relative to itself. For the next case, w' = v, we still aren’t really doing velocity addition, so we will skip to

the w? case, where things get interesting, though we will later show that the general expression holds for w°
and w!.

For w?, we simply use the Einstein velocity-addition law:
w? = tanh(u 4+ U) = tanh (tanh_1 v + tanh ™" wl) = tanh (2 tanh ™ v).
Now I will prove that this is one instance of a general expression, that w" = tanh (N tanh ! v).

w? = tanh (N tanh ™! v)
— tanh ™' w" = Ntanh™'v
— tanh ™' w" + tanh ™' v = Ntanh ™' v + tanh ™' v
— tanh™ ' w" +tanh ™' v = (N + 1) tanh™ " v
= tanh (taunh_1 w™ + tanh ™! v) = tanh((N +1) tanh™* v)

— Nl = tanh((N +1) tanh ™! v).
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If you can believe the last step, then this is proof that it works for all V. The last step is saying that, if we
have a star N, moving away from star 0 at a speed w”, and another star N + 1, moving away from star N

at a speed v, then star N + 1 as observed from star 0 is given by the Einstein velocity-addition law, meaning

we can rewrite that expression as w™¥*1.

Now I'd like to go back and show that this works for N = 0 and N = 1. For N = 1, we get

wt = tanh(ltanh_1 v) =,
which is what we would expect, and for N = 0, we get

w" = tanh (O tanh ™! v) =0,
which we also expect. So the general expression,

w! = tanh (N tanh ! v),
holds true for all non-negative integers N. We can also write this more elegantly as
w” = tanh(Nu).

Now we want to consider the behaviour at large N. We first write tanh in its exponential form, as

N _ 1 —exp(—2Nu)

YT exp(—2Nu)’

When N is very large, then the exponential in the bottom term goes to zero, allowing us to rewrite it as
w” ~ 1 — exp(—2Nu).

We can go a step further. Since v = 0.9, u ~ 1.47, which we can neglect for large N, and so we finally arrive

at

w” ~ 1 — exp(—2N).

19
(a) Using the velocity parameter (u) introduced in Exercise 18, show that the Lorentz transformation equa-

tions, Equation 1.12, can be put in the form

t =tcoshu — xsinhu J=vy
T = —tsinhu + x coshu Z=z
We start by putting v in terms of u.
1
y=(1-v)"2 =1 —tanh®u)"Y? = = coshu.

sech u
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Now we can substitute this into the Lorentz transformation equations

t =v(t — vz) = coshu(t — z tanhu) = ¢t coshu — zsinhu

Z = y(x — vt) = coshu(x — t tanh u) = z coshu — tsinhu
(b) Use the identity cosh? u —sinh? u = 1 to demonstrate the invariance of the interval from these equations.

ds? = —dt? + dz? + dy? + dz?

ds? = —(dt coshu — dz sinh ) + (dz coshu — dtsinhu)® + dy? + dz
- _ (dt2 cosh? u —W—k dz? sinh? u)
+ (dx2 cosh? u —W—k dt? sinh? u) +dy® +d2?

_(u2j32§gilp~qﬁﬁﬁfz§/+-dx%ﬁfgﬂiiu):sﬁﬁ?ﬁ;jQ—dyz+—d22
ds?

(c) Draw as many parallels as you can between the geometry of spacetime and ordinary two-dimensional

Euclidean geometry, where the coordinate transformation analogous to the Lorentz transformation is

T = +xcosf + ysinb,

y = —xsinf + ycosh.

What is the analog of the interval? Of the invariant hyperbolae?
The analog of the interval would be
di? = dz® + dg® = (dzcosf + dysin#)? + (dy cosf — dxsin 0)+
= da? cos? 0 +W+ dy?sin? 6
+ dy?cos? 0 —W+ dz? sin? 0
= da® (sin? 0 + cos? 0) + dy® (sin? 6 + cos® §)
= dz? + dy?
The analog of the invariant hyperbola would be the invariant circle, as & and g are both equations of a circle.

20 Write the Lorentz transformation equations in matrix form.

t=(t —vx) t =yt —yvr + 0y + 0z
z =v(x — vt) T = —yvt +vx + 0y + 0z
y=y y=y
zZ=2z Z=2z
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t vy =y 0 0\[t
Tl |- v 0 O]l=
gl Lo o 1 0olly
z 0 0 0 1 z

21

(a) Show that if the two events are timelike separated, there is a Lorentz frame in which they occur at the
same point, i.e. at the same spatial coordinate values.

If the two events are timelike separated, then it must be possible to have an object with a worldline which
crosses the two points, as it is inside the light cone. If such an object exists, then we can draw a Lorentz
frame for it, so its time axis, ¢ is that line, meaning T = 0 for both events.

(b) Similarly, if the two events are spacelike separated, there is a Lorentz frame in which they occur simul-
taneously.

If the two events are spacelike separated, then it must be possible to draw a coordinate frame where Z has

slope v in O@’s frame. This means that ¢ = 0 for both events, and so they are simultaneous.
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Chapter 2

Vector analysis in special relativity

2.1 Definition of a vector
2.2 Vector algebra

2.3 The four-velocity

An object’s four velocity, denoted U , is the vector tangent to its world line, with unit length. This means it
extends one unit in time, and zero in space, so it is timelike.

For an accelerated particle (which we have not considered up to now), we may not be able to define an
inertial frame, but we can define a momentarily comoving reference frame (MCRF) which, as the
name suggests, moves with the same velocity as the observer for an infinitesimal period of time. We can
therefore construct a continuous sequence of MCRF's for any object. If an object has MCRF O, then its

four-velocity is defined to be the basis vector €.

2.4 The four-momentum
Analogous to the three-momentum, we define the four-momentum to be
7=mU. (Schutz 2.19)

It has components

P (B.p'p*p°). (Schutz 2.20)

Calling p° “E” is no accident, it is in fact the energy. There is an interesting consequence to this: since
vectors are invariant with respect to reference frame, but vector components are not, this means that the

four-momentum does not change in different reference frames, but the energy does. One example would be

23
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the doppler effect, which causes the color (or energy) of a photon to shift depending on the radial velocity

of the source and observer.

2.5 Scalar product

A-B=—(A"B% + (A'BY) + (A%B?) + (A*B?)

2.6 Applications

2.7 Photons

Z-2 =0, so we cannot define U for photons. We can, however, define p. Since p- p = —m?2, and photons are

massless, we have p’- p'= 0.

2.8 Further reading

2.9 Exercises

2 Identify the free and dummy indices in the following equations, and write equivalent expressions with
different indices. Also, write how many equations are represented by each expression.
Note, I will express the set of free indices by F and the set of dummy indices as D, and I will use the original

index names.

(a) A*By =5 — APB, =5 (16 equations, F = {a, 8}, D = Q)

(b) AF = AR AY = A” = AV AV (4 equations, F = {fi}, D = {v}).

(c) To**A,C\" = D" — T"¢9A¢C’9< = D% (16 equations, F = {a, v}, D = {u, \})
(d) R, — 39 = G — Ry — 309, = G, (16 equations, F = {u,v}, D = 0)

4 Given vectors A —¢ (5,—1,0,1) and B —o (—2,1,1,—6), find the components in O of
(a) =64 - (—30,6,0,—6)

(b) 34+ B —¢ (13,-2,1,-3)

(¢) =64 + 3B —¢ (—36,9,3,—24)

6 Draw a spacetime diagram from (O’s reference frame. There are two other frames, O and (5, which are each
moving with velocity 0.6 in the +z direction from each respective frame. Plot each frame’s basis vectors, as

observed by O.
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€5

Figure 2.1: Exercise 6

See Figure 2.1.
9 Prove, by writing out all the terms that

X anate )= 3 [ X anate
B=0 B=0 \a=0

3 3 3
Z Z A@BAﬁé'a = Z (A&OAOé‘a + A(SélAlé*& + A&2A2€@ + A&3A3€@>
a=0

= A% A% + A% AlE; + A0, A% + A0 A%,
+ AgA%e + AT AlEr + AT A%E + AL A
+ A% A%, + A% ATy + A2 A28 + A% A%
+ A% A% + A3 AlEy + A3 A28 + AS A%
= A% A% + A1 A% + A% A%8; + A% A%¢,
+ A ATE + AT AlEr + A% Ale, + A3 Al

+ A% A%E; + AL, A%E + A2, A%8; + A3, A%E
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+ A A%, + A A% + A% A%E, + A, A%

I
e

(A%Aﬁe}, + A APE + A2, A% + A%Aﬂaa,)
0

i)
Il

e

3
DAY APE,
0 \a=0

B

11 Let A‘S‘ﬁ be the matrix of the Lorentz transformation from O to O, given in Equation 1.12. Let A be an

arbitrary vector with components (A%, A, A%, A3) in frame O.

(a) Write down the matrix of A”;(—v).

Intuitively, it should appear the same as A&B’ but with the negative signs removed. More rigorously,
it is given by the matrix inverse of A&ﬁ, as their product should be the identity matrix. I have used a
computer algebra system (Wolfram Alpha) to take the inverse of this matrix symbolically, confirming

my suspicion:

v vy 0 O
0 0
Aoy = |7 .
0 0 10
0 0 0 1
(b) Find A® for all a.
A% = A% AP

(c) Verify Equation 2.18 by performing the sum for all values of v and a.

To simplify things, I do this via matrix multiplication

N2 022 gy? g2
072 — 2 A% = 022
0 0
0 0

o = O O
= o o O
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(1 = v?) 0 00
B 0 Y2(1—-v?) 0 0
- 0 0 10

0 0 0 1

100 0
Joroof_,

0010

000 1

(d) Write down the Lorentz transformation matrix from O to O, justifying each term.

It should just be A”;(—v). I'm not sure what else to say at this point.

(e) Using the result from part (d), find A? from A®. How does this relate to Equation 2.18?

v vy 0 0\ [y(A° —vAl) Y2 (A% —vAY) + vy? (AL —vA%) + 0+ 0
AP A% — vy v 0 0]f~(Ar —0vA%) _ vy2(AY —vAY) +42(A —vAY) + 0+ 0
0 0 1 0 A? A?
0O 0 01 A3 A3
A%y = v?9?) + Al (vy? = vy?) A% (72 = v?y?) A
_ A =) AN o) [ AN =0 | AT L s
42 42 A2
A3 43 A3

Since A% = A%4(v), this goes to show that A”B(fv)Aﬁa(fv)A)‘ =A = A”B(fv)Aﬁa(fv) =0

a-

(f) Verify in the same manner as (c) that

My matrix multiplication approach will just give me the same result as before. Perhaps another approach

was intended?
(g) Establish that

Co =N, 85 = A’ A8, = 0,8,

(o3

AP = NP A% = AP A AT = 67, AT
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14 The following matrix gives a Lorentz transformation from O to O:

(a)

()

15

(a)

1.25 0 0 0.75
0 10 O
0 01 O

0.7 0 0 1.25

What is the velocity of O relative to O?

This would correspond to a Lorentz boost along the z-axis, meaning

v 0 0 —vy
a 0 1 0 0
A ﬁ(v) = )
0 01 0
vy 0 0 v

—vy =

=~ w
W~
)
W~
w
w

So O is moving with speed 0.6 relative to the —z-axis of O.

What is the inverse matrix to the given one?

Numerically, it comes out to be

125 0 0 —0.75
0O 10 0
o 01 o |
075 0 0 1.25

which makes sense, when you consider that the inverse matrix should be a Lorentz transformation with

the velocity negated.

Find the components in O of A —4 (1,2,0,0).

125 0 0 —0.75\(1 1.25

. 0 1 0 0 2 2
A -

o 0 0 1 0 0 0

—-075 0 0 125 J\o —0.75

Compute the four-velocity components in O of a particle whose speed is v in the +a-direction relative
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to O, using the Lorentz transformation.

U=é;
U* = A%5(&)° = A,
U =4

Ul = vy
U?=0°=0

(b) Generalize to arbitrary velocities v, where |v| < 1.

Y YUz YUy YUz
Y v 0 0
vy, 0 ¥ 0
vz 0 0~

U=~ U!'=~u, U2=’yvy U3 =,

(c) Use this result to express v as a function of the components {U“}.

V = V€] + Vy€s + U,€3

Ui
Vi = —

v

1 .
vV = 7Ulé'i

Y

(d) Find the three-velocity v of a particle with four-velocity components (2,1, 1,1).

) ) )

U’ =~=2and U' =1, so

L,
vV = 562‘
17
Not sure how to approach this problem.
(a) Prove that any timelike vector U for which U° > 0 and U - U = —1 is the four-velocity of some world

line.

(b) Use this to prove that for any timelike vector V there is a Lorentz frame in which the V has zero spatial

components.

19 A body is uniformly accelerated if the four-vector @ has constant spatial direction and magnitude, @-d =

a? = 0.
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(a) Show that this implies the components of @ in the body’s MCRF are all constant, and that these are
equivalent to the Galilean “acceleration”.
We normalize the vector @ by dividing each of its terms by the magnitude of the vector, so

a)\

«

Since « is constant, and also the direction is constant, this means that the above expression is also constant,
as the normalized components tell you about the direction. If we multiply a constant by a constant, we
should still get a constant, so we multiply the above expression by «, getting a* to be constant.

In the MCRF of an object, dr = dt, and so we can write

U

o [ dut du? dud
dt \7 At dt? dt )’

which is analogous to the Galilean acceleration.

(b) A body is uniformly accelerated with o = 10m/s2. It starts from rest, and falls for a time t. Find its

speed as a function of ¢, and find the time to reach v = 0.999.

U — (1,0,0,0)
MCRF

2 (1,70,0,0)
aU
ar ke (0 00)
2 (1,72,0,0)
t ¢ t
dU*= dt
Uzzf u def 'ya—:f adt = at
o dr 0 0 0
v

BV
v? = (at)}(1 — %) = (at)? — (atv)?
(1 + (at)?) = (at)?

P R AT
1+ (at)? 1+ (at)?

To find the time to reach v = 0.999, we go back to the expression yv = «t, solve for ¢, and substitute for v
and . Note that in natural units, o = 10m/s?c™2? ~ 1.11 x 10716 m~1

v 0.999
avl—v2  1.11 x 1076 m~—1y/T — 0.9992

24 Show that a positron and electron cannot annihilate to form a single photon, but they can annihilate to

t = ~ 2.01 x 10" m.

form two photons.

We consider the center of momentum frame, where Y p;) —cm (Erotal; 0,0,0). Without loss of generality,
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we assume that the velocities of the two particles are equal and opposite, such that

ﬁe* —CM Me (’Y? Y, 0, 0)7 ﬁe* —CM me('y, -, 07 O)

The photon they create will have to have a momentum of p, gingle —cm (v, hv,0,0). By conservation of

four-momentum, we have

ﬁe+ + ﬁe* = ﬁ'y,single
(ﬁe+ + ﬁe*) : (ﬁfr + ﬁe*) = ﬁ'y,single : ﬁ’y,single

(ﬁeJr 'ﬁe*) + (ﬁe* 'ﬁe*) + (ﬁe* 'ﬁe*) =0

Since we know that m, is in fact non-zero, this cannot possibly happen.
Now consider the scenario wherein two photons are created, moving in opposite directions. Then they
would have momenta: p.,1 —cm (hv, hv,0,0) and py 2 —cm (hv, —hv,0,0). Invoking conservation of four-

momentum as before, we get

Det + De- = Py + ﬁfy,Z
(ﬁeJr +ﬁe*) . (ﬁeJr +ﬁe*) = ( v,1 +ﬁ’y,2) ' (ﬁ"/,l +ﬁv,2)

—3m? = Pyt Dy,1) + (D1 Pry2) + (Py,2 - Pryy2)

I
o —

+ (=h*? — 2% + 0 = —2h%2,

so we end up with 3m2? = 2h%v2, meaning two photons are produced with E? = 2m?2,

5 which is entirely

reasonable.

25

(a) Consider a frame O moving with a speed v along the x-axis of O. Now consider a photon moving at an
angle 6 from O’s z-axis. Find the ratio of its frequency in O and in O.

We must first construct the particle’s four-momentum. In the case where the photon was moving along the

z-axis (see Section 2.7), it had been found that the four-momentum was
p— (E,E,0,0
P o ( ) s Uy )7

as this satisfied
pp=—-E*+E?=0. (Schutz 2.37)

Now that the photon is moving at an angle 6 from the z-axis, we need to redistribute the 3-momentum
accordingly. No specification was given as photon’s angle in the y- or z-axis, so without loss of generality, I

assume it is constrained to the xz-y plane. This means we can write the four-momentum as

]5’6» (E,Ecosf, Esiné,0),
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which you can easily confirm satisfies p’- p' = 0.
Now we may apply the Lorentz transformation A()a (v) to find the photon’s energy as observed by O, and
from that the frequency.

pO:E:A()apa:’ypo—v7p1+0+02ny—v'yEcose
= hv = vhv — vyhv cosf
. 1% 0 1—wvcosf

— =5 —vycosf = ————

L Y Y o2

(b) Even when the photon moves perpendicular to the z-axis (§ = 7/2) there is a frequency shift. This is
the transverse Doppler shift, which is a result of time dilation. At which angle 8 must the photon move such
that there is no Doppler shift between O and O?
To do this, we simply set 7/v = 1, and solve for 6.
lzﬂ = cosezlfm
V1—v?
= 0=+ arccos(l — M)

(c) Now use Equations 2.35 and 2.38 to find 7/v.
Recall that U —¢ (v,v7,0,0). Using Equation 2.35 we have

E=hv=—(FE,Ecosf,Esinb,0) - (y,vv,0,0)

= —(—(E%) + Eqyvcosf) = Ey(1 —vcosf) = hvy(l — vcosf)
1—wvcosf

V1 —v?

26 Calculate the energy required to accelerate a particle of rest mass m > 0 from speed v to speed v + dv

AN

(6v « v), to first order in dv. Show that it would take infinite energy to accelerate to c.

From the four-momentum we have E,, = m~, and from that

m
F o P L —
0 V1= (v+dv)?
If we do a Taylor expansion on (1 — (v + §v)?)~ Y2 we get

1 vov

Vi—or  (-epr o(x?).

SO
B ~_m_ ., _m v
v+ov ~ m (1 . ’[}2)3/2
muv v 3
AE=Ev+5v_Ev%m=m'y vVOU.

As v — ¢, v > o and therefore AE — 0.
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30 A rocket ship has four-velocity U —o (2,1,1,1), and it passes a cosmic ray with four-momentum
7 — 0(300,299,0,0) x 1072"kg. Compute the energy of the ray as measured by the rocket, using two
different methods.

(a) Find the Lorentz transformation from O to the rocket’s MCRF, and from that find the components p®.

The Lorentz transformation for a boost in the x, y, and z directions is given by

YV YUy YUz

If we write out the terms of

1 YW YUy Y0z | [ 2
0 ey 0 0 1
0 - vy, 0 ¥ 0 1 7
0 yv, 0 0 0% 1

then we are left with a system of equations

(
0 =~v(2v, +1),
0 =7(2vy +1),
0=~(2v,+1)

Since v may never be zero, we divide the last 3 terms by « to obtain
1
20,41 =0 = 1)7;:—5,

and plugging into the first equation gives v = 2. From this we see that our Lorentz transformation matrix is

2 -1 -1 -1

ABQ _ -1 2 0 0
-1 0 2 0
-1 0 0 2

Now to find the energy as observed by the rocket, we need to find £ = p°
P = A0 p =20 — pt —p? — pB

=(2-300—-1-299-1-0—1-0) x 107 2"kg = 3.01 x 107°kg = E

(b) Use Schutz’s Equation 2.35.
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E = _ﬁ' Uobs = _(_(300 . 2) + (299 . 1) + (0 . ]_) + (O . 1)) x 10727kg

= 3.01 x 107 kg

(¢) Which is quicker? Why?

Using Equation 2.35 was much quicker, as it was derived to handle this special case.

32 Consider a particle with charge e and mass m, which begins at rest, but scatters a photon with frequency
v; (Compton scattering). The photon comes off at an angle 6 from the direction of the initial photon’s path.
Use conservation of four-momentum to find the scattered photon’s frequency, vy.

We will invoke: conservation of four-momentum and p'- p = —m?. p; and py denote the initial and final

photon, and p. and p. denote the electron before and after collision.

pi (B, Ei,0,0)
ﬁeg(m,0,0,0)
Df s (Ef,Efcosf, Efsing, 0)
Di + Pe = Dy + Per
Per = Pi + Pe — P
Per  Der = (Pi + Pe — Pf) - (Pi + Pe — )
—m? = Pi - Pi + Pe - Pe + Py - By + 2By - By — Di - By — De - Py)
=0—m?+0+2(F; - Pi — Pi - By — Pe - Iy)
0 =i - Pi — Di - Py — Pe - Pf
=—Em— (—E,Ef + E;Efcosf) + Eym
=m(E; — E;) + E;Ef(1 — cosb)
m(E; — Ey) = E;E;(1 — cosf)

mh(v; —vy) = h*vvp(1 — cos )

v — Uy =h1—cost9

vivy m
1 1 1—cosf
S R
vi oy m
1 1 1 —cosf
—=—4+h——

vy v; m
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Tensor analysis in special relativity

3.3 The (?) tensors: one-forms

The symbol ~is used to denote a one-form, as ~'is used to denote a vector. So p is a one-form, or a type ((1))

tensor.

Normal one-forms

Let S be some surface.
vV tangent to S, ﬁ(‘?) =0 = pisnormal to S.
Furthermore, if S is a closed surface & p is normal to S & vU pointing outwards from S, ﬁ(ﬁ) >0 = p

is an outward normal one-form.

3.5 Metric as a mapping of vectors into one-forms

Normal vectors and unit normal one-forms

V is normal to a surface if V is normal to the surface. They are said to be unit normal if their magnitude

is £1, so V2=V2=+1.
e A time-like unit normal has magnitude —1
e A space-like unit normal has magnitude +1

e A null normal cannot be a unit normal, because VZ=V2=0

3.10 Exercises

35
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P(AYE,) = A%B(En) = p(A%E, + ALe) + A28, + A3e)

= A°p(ép) + A'p(E) + A%p(Er) + APp(Es = AYP(Ey) = A%pa e R

ﬁ (_1a17270)

ol

(27 1a 07 71)

ol

A
B~ (0,2,0,0)

p(A)=-241+0+0=-1
BB)=0+2+0+0=2
(A —3B) = p(A) —3p(B) = —1-3-2= -7
4 Given the following vectors

(1,2,0,0)

™

e
o W

ol

(737 23 Oa 0)

ol

(Note that all parts were done with the assistance of numpy.)
(a) Show that they are linearly independent.
We do this by constructing a matrix, X, whose columns correspond to the four vectors. If the determinant

of X is non-zero, then that means the vectors are linearly independent.

21 0 -3
1 2 0 2
det(X) = det =-8
101 0
0 01 O

(b) Find the components of p if
pA) =1, p(B)=-1, p(0)=-1, pD)=0

We do this by observing that p = A%p,, and so we have a system of four equations, which we can write in
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matrix form as

(c) Find ﬁ(E), where E —¢ (1,1,0,0).

(d) Determine whether p, ¢, 7, and § are linearly independent.

o Q4 oy

!

=

o o 5
P(E) =pa BY = —2

| o Q4 oy

(SN

—+

ooftf ool

37

We do this by first setting up a system of equations for each of ¢, 7, and §, as was done for p, and solving. I

will refer to the matrix whose rows were /_1', E, é, and D as X.

L}

+0
+0
+1

g

o= oolco ool i

_|_

o
<

it

+2
+0
+0
+0

+0
+0
+2

+2

V31

Vo33

ol ol 00l [

Now if the matrix whose columns are comprised of p, ¢, 7, and § has a non-zero determinant, then the four

covectors must be linearly independent.

and so they are indeed linearly independent.

6

det (ﬁ
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(a) Show that p # p(€,)A* for arbitrary p.

Let us choose p —o (0,1,¢e,7), as a counter-example.
paj\a 80. (1,1,0,0) +1-(1,-1,0,0) + e- (0,0,1,—-1) + 7 - (0,0,1,1)
— (1,—-1 0)p
O ( b 76 +7r’ )7(9{])

(b) p —o (1,1,1,1). Find I, such that
B =laA"

We may do this with a simple matrix inversion. We define A to be the matrix whose rows are formed by PCH

1

Al=p — I=A"1p=

S =

8 Draw the basis one-forms dt and dz of frame O.

They are

dt 8 (]‘707 0’ O),

de — (0,1,0,0),

and they are shown in Figure 3.1.
9 At the points P and Q, estimate the components of the gradient d7.

Recall that dT —o (g—g, g), and so AT = dT,z% = dT,Ax + aTyAy.

Now if we move only in the x direction from one of the points, we move some distance Az, change our

temperature by At, and Ay = 0. Likewise for a movement in the y direction. Thus we can say

AT = AT, Ax AT = dT, Ay
~ AT ~ AT
dT, = — dT, = —
Ax Y Ay
In Figure 3.2, from P I move a distance Az = 0.5, which causes a temperature change of AT = —7, giving

dT, = —14. Then I move a distance Ay = 0.5 and get the same temperature change of AT = —7, and so [
conclude that at point P, dT —¢ (—14, —14).

At Q, we are in a flat region where T' = 0. If we move any non-zero distance Ax or Ay, so long as it does
not cross the T' = 0 isotherm, we have a AT = 0, and thus c~1Tp —o (0,0).

13 Prove that df is normal to surfaces of constant f.

If we move some small distance Az® = ¢, then there will be no change in the value of f, and thus we can

say 0f/0x® =0, so
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Figure 3.1: Problem 8: Basis one-forms of @. dt is given in blue and dz in red.

Since df is defined to be normal to a surface if it is zero on every tangent vector, we have shown that df is
normal to any surface of constant f.

14

5= (1,1,0,0) q

Prove by giving two vectors A and B as arguments that p® ¢ # ¢ ® p. Then find the components of p® q.

(F®q)(4, B) = p(A)G(B) = A%paB’qs = (A° + A')(—B° + B?),
= —A°BY + A°B2 — A'B? + A'B?
(@®p)(A, B) = G(A)p(B) = A°qa B ps = (—A° + A*)(B® + B')
= —A°BY — A°B' 4 A?B° + A%B!,
And so we see that ® is not commutative.

The components of the outer product of two tensors are given by the products of the components of the
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Figure 3.2: Problem 9: Isotherms.

individual tensors. Thus we can write the components as a 4 x 4 matrix.

-1 0 1 0
. -1 0 1 0
(P®Qap = pats =
0 0 O
0 0 0 O
18
(a) Find the one-forms mapped by g from
Ag(]'?()? 1’0>7 38(071’1’0)7
¢ = (=1,0,-1,0), D —(0,0,1,1).
In general,
Vo (VOVivive) — V=gV = VO vt vz v,
and so
A — (~1,0,-1 B —(0,1,1
O( aOa 70)7 o (07 9 ’0)7
> — (1,0, -1 D — 1,1).
C O ( 707 70)7 o (0707 9 )
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(b) Find the vectors mapped by g from

pg (3307_17_1), qg’ (13_17171)3

7 (0,-5,-1,0), 5= (=2,1,0,0).

pg (_3a07_17_1)7 qz (_17_1a171)7

7 (07 *537170)3 §6’ (2717070)'

ol

20

In Euclidean 3-space, vectors and covectors are usually treated as the same, because they transform the
same. We will now prove this.

(a) Show that A% = A%Aﬁ and Py = A®5 P, are the same transformations if {A®3} is equal to the transpose
of its inverse.

We can write that last statement as

and we know that
(A5)~" = A7,

and also we know that the Lorentz transformation is symmetric, and so

which leads us to conclude that A 5= ABa, meaning the two transformations are the same.
(b) The metric has components {d;;}. Prove that transformations between Cartesian coordinate systems

must satisfy

5{3 = Ak;Al‘a 5kl B

and that this implies that A"“g is an orthogonal matrix.

07 = 8(E,€5) = g(A%ek, A'3)) = AY5ATe(e, &) = AAG 0w

Now show it is orthogonal

21

(a) A region of the t—x plane is bounded by lines ¢t = 0, t = 1, x = 0, and 2 = 1. Within the plane, find the
unit outward normal 1-forms and their vectors for each boundary line.

I define unit outward normals as follows:

Let S be a closed surface. If, for each 1% tangent to S, we have ﬁ(‘?) = 0, then p is normal to S.

In addition, if, for each U which points outwards from the surface, we have 13([7 ) > 0, then p is an outward
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normal.

Furthermore, if p?> = +1, then it is a unit outward normal.

For the problem at hand, I define the region inside the four lines to be Inside, and the region outside to be
Outside. For each of the four lines, I draw a vector 1% tangent (parallel) to the line, and U pointing outwards
(See Figure 3.3).

It helps to look at t = 0 and ¢ = 1 together, and likewise for x, so I will start with ¢. We start with an
arbitrary p —o (po,p1), and V o (0, V1), where V! # 0.

V) =po-0+pV =0 — p, =0,

so0 p —o (po,0) is a normal 1-form to both lines. Now we find the corresponding unit normal, by taking

PP =41=—(po)® = = —1&po = +1.

Whether we choose py to be positive or negative now depends on the line we are looking at, and which

direction is outward. For ¢ = 0, we have a vector U= (=U% U'), where U° > 0.
PU) =po(~U°) +0-U' >0 = —poU° >0 = py <0,

so for t = 0 we have p —o (—1,0), and likewise for t = 1 we have p —¢ (1,0). To get the associated vectors,
we apply the metric n*?, giving us o —o (1,0) for t = 0 and 7 —¢ (—1,0) for ¢t = 1.
For x = 0 and x = 1, we instead have 1% —0 (V?°,0), and following the same steps as before, we conclude

that: for z =0, p -0 (0,—1), ¥ >0 (0,—1), and for x = 1, p > (0,1), p >0 (0,1).

Figure 3.3: Problem 21.a

(b) Let another region be bounded by the set of points {(1,0), (1,1),(2,1)}. Find an outward normal for the
null boundary and the associated vector.

23

(a) Prove that the set of all (%) tensors forms a vector space, V.

Let T be the set of all (%) tensors, s,p,q € T, Ae R", and a € R. For T to be a vector space, we must
define the operations of addition, and scalar multiplication (amongst others).

Addition:

s=p+q = s(4) =p(4) +q(4)

Scalar Multiplication:

(b)
Prove that a basis for T is

(6a®..®E,R0"®...Q0"}
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Still working on it

24 Given:

MeP

[ N T
o |
—_
o O
o — \V] o

(a) Find:

0o 1 1 3 0 0 -1 —3
yesn |11 0L . gl 0 0 0 1
1 0 0 -3 1 0o o 3
i1 -1 0 i -1 -2 0
(i)
0 -1 0 0
My gy, MO 1 -1 0 2
2 0 0 1
1 0 -2 0
(iii)
0 -1 0 0
Ma’B = nauM“’B — -2
2 0 0 1
1 0 -2 0
(iv)
01 0 0
My = M 1 -1 0 2
2 0 0 1
1 0 -2 0

(b) Does it make sense to separate the (}) tensor with components M“; into symmetric and antisymmetric
parts?

No, it would not make sense. For one, the notation for (anti)symmetric tensors do not even allow one to
write it sensibly (M (aﬁ) ). More importantly, one argument refers to vectors, and the other to covectors, so

it does not make sense to switch them.

()
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-1 0 0 0}f—-1 O 0 O 1 0 0 0
R 0 100 0 100 _ 01 0 0 _ 5,

0 0 1 0 0 0 1 0 0 01 0

0 0 0 1 0 0 0 1 0 001

31

Still working on it

(33)

34 Define double-null coordinates u =t — x, v = t + x in Minkowski space.

(a) Let €, be the vector connecting the (u,v,y,t) coordinates (0,0,0,0) and (1,0,0,0), and let &, be the
vector connecting (0,0,0,0) and (0,1,0,0). Find €, and €, in terms of €; and &,, and plot the basis vectors

in a spacetime diagram of the t—x plane.

u=t—x=0 = t=+4zx v=t+zx=0 = t=—x

u=t—x=1=—= t=1+z v=t+zr=1 = t=1—2x

We draw the vectors €, and €, in Figure 3.4, such that they point from the appropriate points of intersection

—

on these lines of constant v and v. From this it is obvious that €, + €, = €;, and that €, — €, = €, or

—

likewise €, = €; — €, and €, = €, — €,. This is a system of 2 equations with two unknowns.

(b) Show that &, o € {u,v,y, z} form a basis for vectors in Minkowski space.

A = A%G, = AYG, + AYE, + AYE, + A*E,
Av LAY _ _
= 7(@ — &)+ 7(@ +é,) + AVe, + A%e,

1
= S(AY + AME + S(A” = AM)E, + AYE, + A%€.

N

If we let A® = 1(AY + A%) and A" = 1(A4Y — A"), then

1
2
A= A%E, = A'é, + A®E, + AYE, + A%,

(¢) Find the components of the metric tensor, g in this new basis.
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To make this concise, we will begin with some definitions. Let w € {u, v}, and ¢ € {y, z}. We also define
-1, if w=u,
+1, ifw=nw.

It follows that
1
Cw = i(é} + Aéy).

Now we can show that
. 1 . N .
Juw = €w * €w = = (€ + Aéy) - i(et + A\é;)

1
= e a +20E - &) + V(@ - &)

1
Z(—1+2A-0+1-1)=0,

SO Guu = Gow = 0.

For the u and v cross terms, we have

| ..,
guv:gvuzeu'ev:7(€t76x)'§( t+6x)

1
=Z[é’t-€t+0~€t~€x—€xo€x]
1 1
=—-(-140-1)=—=
4( * ) 2
For the w with y and z cross terms we have
S 1. S\ o
Guwqg = Cw - €g = §(et + Aéy) - €y
1. .
zi[et~et+)\ew~egg]
=0

SO Guy = Goy = Guz = Gv- = 0. We also already know gy, = g.. = 1, and g,. = g, = 0, so we can write the

components of the metric tensor in this new coordinate system as

0 -2 00
1
-3 0 00
Gap =
0 10
0 0 01

(d) Show that é, and €, are null, but not orthogonal.

€y €y = Guu =0 = &, is null

5U-5U=QUU=O - gy is null
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1
€y Cy = Guov = —5 # (0 = €, and €, are not orthogonal.

(e) Compute the four one-forms du, do, g(€y,), and g(€,,) in terms of dt and dz.

i g (2020 00 26
O\t oz oy’ 0z )
SO
dt —o (1,0,0,0), dz —o (0,1,0,0),
N 1 - 1
du—o 5(1,-1,0,0), du—o (1,1,0,0),

from which it is obvious that

- 1~ = - 1~ =
du = §(dt —dx), dv = §(dt + dz).
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Figure 3.4: Problem 34a: Spacetime diagram

of double-null coordinate basis vectors in t—z plane.

47
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Chapter 5

Preface to Curvature

5.8 Exercises

1

(a) Repeat the argument leading to Equation 5.1, but this time assume that only a fraction ¢ < 1 of the
mass’s kinetic energy is converted into a photon.

If only a fraction e of the energy is converted into a photon, then it will start with an energy of e(m +
mgh + (9(1)4)7 but once it reaches the top it should have an energy of em, as it loses the component due to

gravitational potential energy. Thus

E em m
— = = =1—gh+0O(v*
E  e(m+mgh+O(vY) m+mgh+ O(v?) e (v )

(b) Assume Equation 5.1 does not hold. Devise a perpetual motion device.

If we assume that the photon does not return to an energy m once it reaches the top, but instead has an
energy m’ > m, then we could create the perpetual motion device shown in Figure 5.1. A black box consumes
the photon with energy m’, and splits it into a new object of mass m, and a photon of energy m’ — m. The
object repeats the action of the original falling mass, creating an infinite loop.

2 Explain why a uniform gravitational field would not be able to create tides on Earth.

Tides depend on there being a gravitational field gradient. If the curvature closer to the source of the field
(e.g. the Moon) is greater than it is further away, then the closer side will move towards the source more
than the further side, thus creating tides. In the absense of such a gradient, there would be no difference in
curvature between the two sides, and thus they would not stretch relative to each other.

7 Calculate the components of Aa/ﬂ and A” , for transformations (z,y) < (r,6).

Ar or/ox  dr/oy \ [ Ax Az ox/or dx/d0 \ [ Ar
Al 00/ox  00/oy | \ Ay Ay dy/or  dy/o0 | \ A6

49
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Figure 5.1: Problem 1: Perpetual motion device.

/v /2?2 +y? y/a?+y?\ [ Az cos —rsind\ [ Ar
—y/(x® +y?) z/(@®> +y?) |\ Ay sin rcosf )\ Af
cos 0 sin @ Az z/v/x2+y? —y\[Ar
—(1/r)sin@ (1/r)cosf |\ Ay y/Ne2+y? oz [\AG
A", =x/A/2? + y? = cosO A®, = cos = x/r/x? + y?
A", =y/v/a? +y? =sind AV, =sinf = y/v/x% + y?
A = —y/(a? +9?) = —(1/r)sinf A%y = —rsinfh = —y
Aey = 2/(z* + y*) = (1/r) cos O ANy =rcost =z
8
(a) f = 2% +y? + 22y, V - (22 + 3y, y* + 3x), w (—;) (1,1). Express f = f(r,0), and find the components
x,y T,

of Vand W in a polar basis, as functions of r and 6.

f=2*+y*+ 20y = (v +y)*
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= (rcosf + rsinf)? = r?sin® @ + r? cos® § + 2r? sin 0 cos

= r%(1 + sin(26))

~ r2 cos? 6 + 3rsin 6
V —
(=.9) \ r2sin% 0 + 3r cosf
7 cos 0 sin @ r2cos? 6 + 3rsin b

(r8) \ —(1/r)sin® (1/r)cosf ) \r?sin®6 + 3rcos
72 cos? @ + 67 sin f cos § + r2 sin® 6
(r8) \ —rcos2@sind — 3sin? 6 + rsin’ 6 cosf + 3cos2 0
72(sin® 6 + cos® @) + 67 sin O cos O
(r8) \ rsin @ cos O(sin 6 — cos #) + 3(cos? § — sin? 9))
72(sin® @ + cos® 6) + 3rsin(26)
() (r/2) sin(260)(sin 6 — cos ) + 3 Cos(29))

. cos sin 0 1
W —
0 \ —(1/r)sin@ (1/r)cosf)\1

cos 0 + sin 6
(0 \ (1/r)(cos § — sin )

(b) Express the components of df in (x,y) and obtain them in (r,6) by:

(i) using direct calculation in (r,0):

df o (ofjor , of/26) = (27"(1 + sin(26)), 202 COS(%)))

(ii) transforming the components in (z,y):

df (_>) (0ffox , of Joy) = (2(z + y),2(z +y)) = (2r(cos# + sinb), 2r(cos 6 + sin b))
z,y

((af)r (af)g):(l 1) cosf —rsinf [27(cos 6 + sin )]

sinf rcosf
= (21"(cos2 0 +sin? @ + 2sinf cos @) 2r%(cos? § — sin? 0))
= (2r(1 +sin(26)) 2r2 cos(29))

(¢) Now find the (r, ) components of the one-forms V and W associated with the vectors V and W by

(i) using the metric tensor in (r, 6):

51
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Ve = graV® = g1 V" + groV°
= 72(sin® @ + cos® 0) + 3rsin(26)

Vo = gor V" + 9oV = (1/2)r3 sin(26)(sin  — cos 0) + 3r2 cos(26)

Wy = gra W = graW® + gy WY
= 1(cos @ + sin @) + 0[(1/7)(cos  — sin6)]
= cosf +sinf

Wo = goa W™ + go,W¥ =
= 0(cos @ + sin @) + r?[r(cos 6 — sin6)]

= r(cosf — sin )

(ii) using the metric tensor in (z,y) and then doing a coordinate transformation:

V.=V V,=VV
Ve =A%V, = A"V, +AYV,
= cos OV, + sinV,,
=12 cos® 0 + (3/2)rsin(26) + r? sin® 6 + (3/2)r sin(20)
= 72(cos®  + sin® @) + 3rsin(26)
Vo = A%V, = A%, V, + A%,V
= (—rsind)V, + (rcos )V,
= —r3cos? Osin O — 3r?sin® 6 + r® sin 0 cos 0 + 3r% cos? 0

= 73 sin 0 cos O(sin @ — cos 0) + 3r*(cos? O — sin” 0)

(1/2)r> sin(26)(sin @ — cos 6) + 3r% cos(26)
Wy=W*=W, =W¥=1
W, = A* W, = A" W, + AY W,
= cosf +sinf
Wy = AW, = A* W, + AY )W,
= —rsinf + rcosf

= r(cosf — sin )

11 Consider V (—>) (22 + 3y, y* + 3x).
T,y
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(a) Find V', in Cartesian coordinates.

T
Ve,

=2x; VY =2y V' =VY

Ve, = A ANV
VT = AT ATV, AT AN VY AT A VR AT AT VY,
= (cos? 0)(2r cos 0) + (sin? 0)(2rsin §) + (sin @ cos 0)(3) + (sin 6 cos 0)(3)
= 2r(cos® 0 + sin® 0) + 3sin(26)
VO =N A Ve + AP N VY AP AV VT A N VY,
= (sin? 0)(2r cos 0) + (cos® 0)(2rsin ) + (—sin cos 0)(3) + (—sin @ cos 0)(3)
= sin(20)[r(sin 6 + cos 0) — 3]
V7 = AT ATV, + AT AV VY AT A VT AT ATV,
= (—rsin® cos0)(2r cosf) + (rsinf cos §)(2rsin ) + (r cos? 0)(3) + (—rsin’ )
= 72 5in(26)(sin @ — cos @) + 3r cos(26)
e = ALAT VT A AV VY A AV VT A AT VY,
= (—(1/r)sin@cos §)(2r cos ) + ((1/r)sin b cos 0)(2rsin @) + (—(1/r)sin®0)(3) + ((1/r) cos? #)(3)

= sin(20)(sin 6 — cos ) + 3 cos(20)
r

(¢c) compute V“:V, directly in polars using the Christoffel symbols.

Recall that we have T =T7 , =T1%,=0,T% , =1/r, and I, = —7.

Ve, = Ve veTr
Veo= VT, VT,
V', =ov'jor = 2r(sin® 6 4 cos® ) + 3sin(26)
Verr,, =V + VT, =0

Vi, =V, =2r(sin® 0 + cos® §) + 3sin(26)

Vi =V +veTl,,

Vi =ov? / 00 = (r/2)sin(26)(sin 6 + cos §) + r cos(26)(sin 6 — cos 6) — 6 sin(26)

vere , =vrre , +vere,

= [r2(sin® O + cos® 0) + 3rsin(20)](1/r)

= 7(sin® @ + cos® 0) + 3sin(26)
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V% = sin(20)[r(sin + cos @) — 3]
Vig =V + VT4 + VI,
=V +VT7yy = 0V7 /00 —rV*®
= 67 cos(20) + (3/2)r? sin(20)(sin @ — cos 0) — ((1/2)r? sin(26)(sin 6 — cos §) + 3r cos(20))
= r?5in(26)(sin § — cos @) + 3r cos(26)
L e R R A %V"
= (1/2) sin(20)(sin 6 — cos #) + (1/2) sin(20)(sin & — cos B) + (3/r) cos(26)

= sin(260)(sin @ — cos 0) + (3/r) cos(20)
(d) Calculate the divergence using the results from part (a)

«

Ve, =V, + VY, =2(x+y)=2r(sinf + cos6)
(e) Calculate the divergence using the results from either part (b) or (c).

Ve =V + VY
= 2r(sin® 0 + cos® 0) + 3sin(20) + sin(26)[r(sin 6 + cos ) — 3]

= 2r(sin@ + cos )

(f) Compute V“:M, using Equation 5.56.

’ 1 a a
i _ - Y T - 0\ __ :
V g —rar(’l“[/ )-l—ae([/ )—27“(51119—!—(;089)

12

p — (x2 + 3y, 9% + 3x).
(z,y)

(a) Find the components p, g in Cartesian coordinates.
Since pa,g = 6pa/8z5, it’s simply py » = 22, py,y = 2y, and Py y = Dy = 3.

(b) Find the components p, ., in polar coordinates by using the transformation A® H,Aﬁ Do B

Prir = (A7) Pa + (M) py y + 207, MY, iy
= (cos? 0)(2r cos 0) + (sin® 0)(2r sin §) + 2(sin O cos 0)(3)
= 2r(sin® 0 + cos® ) + 3sin(26)

Doo = (Ame)me,z + (Aye)zpy,y + 2079 A gDy

= (—rsinf)?(2r cos ) + (r cos 0)*(2rsin 0) + 2(3(—rsin O)(r cos )

72 sin(20) (r(sin 6 + cos ) — 3)
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Prio = A A ppao + AV Ay + AN gpay + AV AT gy o
= (—rsinf cos 0)(2r cos #) + (rsin @ cos §)(2rsin §) + 3(r cos® § — rsin® §)

= 72 5in(26) (sin  — cos @) + 3r cos(26),

and by the symmetry of p, g in Cartesian coordinates, pg,, = pr.g.

(c) Now find p,s,,» using the Christoffel symbols.

Prir = Pro = Pl = peL%p = pry = 0p/0r
= J/or [r2(0053 6 + sin® ) + 3r sin(29)] = 2r(sin®0 + cos® 0) + 3sin(20)
Po:0 = Po.o — Pl g9 — Pl %00 = Do + TPy = Opp/00
= 0/00 [(1/2)r3 sin(26)(sin 6 — cos §) + 312 cos(?@)] + r[r2(6053 6 + sin® ) + 3r sin(29)]
= r?sin(26)[r(sin 6 + cos §) — 3]
Prio = Dro =PI g — Pl = Opr /00 — (1/r)pg
= 72 5in(26)(sin 6 — cos #) + 3r cos(26)
Po:r = Po.r — DI, — poT%,. = dpe/or — (1/7)pe
= 72 5in(26)(sin 6 — cos #) + 3r cos(26)

13 Show in polars that g/« VO‘:V, =Dy

GV = ge V' + graV,
=1V, =prr
900V = 90: V" + o6V
= 7"2V9;9 = Doy
gra’Val;e = grrVT;Q + grevg;e
= 1V7;9 = Po;r
960V = 90,V + gooV',

= 7”2V6;'r = Po;r
14 Compute Vg A*¥ for the tensor A with components:

AT = 2 A" = rsiné,

)

A% — tano, A% = rcosf
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rr rr
A v =2r A 0 =0
A%’r =0 Aae’e = sec’
A"  —=sinf A" ) = rcosf
A@r _ 0 A@r _ ind
, = COS 9 = —Tsin

VAR = AM 4 ASWTF oy ATV

VAT = AT+ AT, + ATOTT,,
= AT 4 AT+ AerFrer +ATTTT, 4 Ararrer
= A" =2r

VgA™ = A" 4+ AT" g + A™T"

— AT+ AT g+ APTT ) 4+ ATTTT 4+ ATTT,,
= (A" + A"y = —12(sin 6 + cos 0)

VA% = A% |+ AT+ A%TY,

_ A(’Q’T + ATOT? 4 AT, 4 AOTTO 4 A%TY,
=2A%7°%, — (2/r)tand

VeAY = A% )+ A*T0 , + A%°T? ,

_ A0979 + Ararere + AQGFO% + Aerrew + A09F009
= A(’o,a + (A" + AT ) = sinf + cos O + sec® 0

VA = AT 4 AT, 4+ ATOTY,,
= A"+ AT+ AYTT, + AT+ ATTY,
= A"+ A%, = 2sing

VoA™ = Ay + AT 5 + A™°TY
_ Areﬂ + Arerrre + AOGFr99 + A”Tere + Araraeg
= A" 4+ AT + A"TY 5 = r(1 + cosf — tan 6)

VAT = A 4 AT+ AT,
= A" 4+ AT+ AP, + AT+ APTT,
= Aer’r + AT, =2cosf

VoA = A 4+ AT 5 + A%°T7
_ Aerﬁ + Arrrew + AerF099 + Aerrrﬂg + Aaerree

= A@T’ﬂ + ATTFOTQ + A%FTW = —T SlnH

15 Find the components of V% for the vector V" =1, Vo =o.
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We start by finding the components of V5 .
Vi = Vi + VI .
By noting that V%5 = Vo = I, =17, =0, we can simplify this to
Vi =V'T%g,

which means
Vi, =V =Vl =0, Vi = %
Now we can say
Vi = VuV% =V, + Vﬂéﬁ I = Vo Fvﬁu'

3

Note that V% is a function only of 7, and so Ve;(,’r = —1/r%, and all other partial derivatives are zero.

We can also see by inspecting the components, that V", ., = Vem I'", , as all other components go to zero.

O

Likewise, we can see that Vam w = —V“);‘9 F‘gw. It then becomes easy to find all the individual components.
I summarize their values in Table 5.1.
16 Repeat the steps leading from Equation 5.74 to 5.75.

Recalling that go,.s = 0, we can rewrite Equation 5.72 as
JoaB,p = Fyap,gl/ﬁ + FV,B,ugOél/'
Now if we switch the 8 and p indices, and then switch the a and 8 indices, we get two more equations,

Jau,p = Fyaﬁguu + Fyﬂﬁgowv

9Bu,a = ]-—Wﬁagl/,u + ]-—W;Lagﬁlw

Now we add the first two equations and subtract the third, getting

Gopu + Goup = 9pma = I apgus + 15,900 + 1705000 + T 900 =T gagun =T 10 9p0

= F’/(Y;lgﬂl/ + + IwozﬁgVH + - Futxﬁ’g’/u - Fuap,gﬁl’

Ve

a [ p B
0 0 0 0
0 0 r | —1/r
0 r 0| —1/r?
g r r 0
r 6 0 -1
r 6 r 0
r o r 6 0
ror T 0

Table 5.1: Components of the tensor in Exercise 15.



o8 CHAPTER 5. PREFACE TO CURVATURE

= 2FVBNgOUJ'

Recalling that ¢*Yge, = g7
5.75:

, = 67, we divide both sides by 2 and multiply by ¢*7, arriving at Equation

1 2 ,
59" (9ap.n + Yo = Iopa = 5977 9ar gy

_ 1TV
_Fﬁu

17 Show how V‘fa and V#T#  transform under change of coordinates. Neither follows a tensor transfor-

mation law, but their sum does.

Ot/ ava’ ﬁ a Oé’ (e
Ve 4 = =A 63,8 [A % ]
0 , r 0
_18 a Y jsa o Y vra
_FB,[V axﬂA ot A aaxﬂv]

= AL VN 5+ AP LAY VO,

B pAd' yra
# A% A Ve

0€y 3 0 tha =
oxP 7 B oxP (A%l
0 0
_ AB a = > @
=A 5 [A a,—axﬁea + ea—axﬁ/\ a/]

= AﬁB/Aaa/F#aBé;L + ABBIAaa/7ﬁ€;

# N A T L6,

so we have shown that de, / 0z% is not a tensor, and since V* is a tensor, and the product of a tensor and

a non-tensor is also not a tensor, then V#T'?  is not a tensor.

vo

According to Carroll, the precise transformation is
FUIH/)\/ = A#M/A)\)\/AVIDFVH)\ Jr AuM/A)\)\/AV/'uA.
Now we add the two expressions, in order to show that it is a tensor equation

VV:)\/ + VM/FVIH/)\/ = AA)\/VVAV/V’)\ + AA)\/AV/VVV’)\ + AA)\/AV/VVHFVH)\ + A)\/\/VVADI)\’M

= A (V) + VAT,

So it does in fact transform like a tensor equation, meaning V", is a tensor!
18
Verify Equation 5.78:
€a €5 =9ap = ap
0% o = goPf = 5§98
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For the basis vectors, we have

g = €p " €p = €p - €r = gpr =1
LS 1, 1, 1., 1
966 = €5 €5 = <r69> : <r69) = 72(69 €p) = —gro =1
Lo o (L L.
gfé_e’f'eé_e’r'(r 0>_r(€r'69) “9re =

997 = 979 =0

So it is indeed true that 9ap = (5&3.

Now for the basis one-forms, we have
G =" @ =dr-dr=g¢" =1
¢ =& &0 = (rd6) - (rd0) = r2(d6 - dB) = r2¢% = r2(1/r?) = 1

gfé o0 =dr- (7"(?10) = r(ar . 39) =rg"" =0

So it is indeed true that g&f@ = 548,
19 Repeat the calculations going from Equations 5.81 to 5.84, with dr and d6 as your bases. Show that they

form a coordinate basis.

aTICOSQdQZ+SiH0dy= g&aﬂrg&y
ox oy
o5 o6
p = cosf; 3 = sinf
00§ 0 0 0 B i

which is true, so we have shown that at least dr may be part of a coordinate basis.

dg = ! sin Odx + 1cos9c~1y = a—n&x + a—nay
r r ox oy
@zflsi 0; @zlcosﬁ
or r y T
Jdadn 0 0dn 0 1. _d 1
Jyor 5 dy = ay[—rsm9] = &x[TCOSQ],

which is also true, and thus we have shown that dr and d form a coordinate basis.
20 For a non-coordinate basis {€},}, let ¢*,, = Vg, €, — Vg, é),. Use this in place of Equation 5.74 to derive
a more general expression for Equation 5.75.

c is antisymmetric w.r.t. its bottom indices.
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(67 g (6% g
= ¢ ,,€a €y puCa
(o _
Cuw = TC

Expanding the covariant derivatives in the original expression, we get

o = — -
Cupa = Cusp — Cpp

= (€u — €al'"),) = (Eup — €al'”,,)
= é’a (Fauy - Fauu)
Caw = Fa;w - Favu

Now we recall the result from Exercise 16, but without assuming symmetry of the Christoffel symbols

Joppu + Japp = e = U ou9vs + T 5,900 + T 0590 + T ug90r — T g0 Gup — T 10 9p0
=T"0980 + + T 5 Gun + — T g0 9vn = T” 450
= gﬁ”(ryau o Iwua) + gm’(lwﬂu + Fuuﬂ) + gvu(rya,@ B F”Ba)
= 980 ap + 9o (T 5, + T 5 + T3, = T75,) + guuc’ g
= 980 ap + Gou ap + 9o (2T g, + ¢ 1)

972901 3, = 9" (9ap.u + Gop.8 — 9pu.a — Chap — Cuap — Capp)

y 1
[, = §gyu(gaﬁ,u + Yau,p — 9Bua — Chap — CuaB — Capp)
21 A uniformly accelerated observer has world line
t(A) = asinh A, z(\) = acosh A

(a) Show that the spacelike line tangent to his world line (which is parameterized by ) is orthogonal to the
line parameterized by a.

The line tangent to his world line is

— d
V- a(taz) = (acosh A\, asinh \).

The line parameterized by a is

W — (f—a(t,x) = (sinh A, cosh \)

If they are orthogonal, then their dot product must be zero

V- W = —(acosh Asinh \) + (asinh A cosh \) = 0,

which it is.

(b) To prove that this defines a valid coordinate transform from (), a) to (¢, z), we show that the determinant
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of the transformation matrix is non-zero.

ot/oX  ot/oa | ot oz Ot 0w
ox/oN ox)oa) 9A0a  OadX

= acosh? A\ — asinh? X\ = a

£0,

and so it is indeed a valid coordinate transform.

To plot the curves parameterized by a, we take

—1? + 22 = a®(cosh® X — sinh? \)

= a2’

which gives us a family of space-like hyperbola, depending on the chosen value of a.

To plot the curves parameterized by A, we take

x =acosh\ = a = x/cosh\

t = asinh A = xsinh A/ cosh A = z tanh )\,

which gives us a family of space-like lines, depending on the chosen value of A.

A plot of these curves is given in Figure 5.2, from which it is clear that only half of the t—x plane is covered.
When [t| = |z|, then a = 0, since —t? + 22 = a?. We already found that the determinant of the coordinate
transformation is a, so this would make the determinant 0, making it singular.

(¢c) Find the metric tensor and Christoffel symbols in (), a) coordinates.

First we find the basis vectors:

—

& = a(cosh A\é; + sinh \é,),

€, = sinh Aé; + cosh Aé;.
Now we find the components of the metric tensor g as

g = a*(cosh \é; + sinh A&, )?

a? (cosh2 M)y + sinh? A, + 2sinh A cosh Ay, )
= a®(sinh® X — cosh? \)
— g2

Jaa = (sinh A&; + cosh \&,)?
= sinh? My + cosh® A, + 2sinh A cosh Ay,

=1
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Figure 5.2: Lines of constant A and a in Problem 21.

Ira = Gax = a(cosh A& + sinh A\é,,)(sinh Aé; + cosh Aé;)

= a(cosh Asinh A(ny + 7ze) + 2 sinh A cosh Ay, )

Now for the Christoffel symbols, since we know this is a coordinate basis, we can use

1

[ = 590‘7(

9aBu + Gou,8 — 9pu.a)

1 1
F)‘,\,\ = §ga>‘(ga,\,,\ + Jorr — 9ara) = §9a)‘(—g>\,\,a)

=0
Te _ 1 aa( + o
aa 29 gaa,a gaa,a gaa,a)
=0

1 1 4,

1 _
FA)\a = iga)\(ga)\,a + Jaa,x — g)\a,a) = 59 9\\a = 5(704 2)(*2&)

=1/a

1 1
Fa)\a = igaa(gak,a + Goaa X — g)xa,a) = igAagA)\,a
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22

1-\)\

aa

a
F)\)\

=0
1
- 59
=0
1
- 59

=a

o (gaa,a + Yaa,a — gaa,a)

aa(

1
Garx T Garr — Gana) = 59‘”(—9,\,\,@) =

UV VP =WF — UV, =W
—— gaﬁUaV’{a =gryﬁW’y
= U"Vpia = Wp

— UV, Vs = W

1

Z.9.
2

a
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Chapter 6

Curved Manifolds

6.9 Exercises

1 Determine if the following sets are manifolds, and why. List any exceptional points.

(a) Phase space in Hamiltonian mechanics is generally smooth, though it may contain singular points,
depending on the system described. So it is a manifold, excluding the singularities.

(b) The interior of a circle in 2D Euclidean space is smooth everywhere, and is therefore a manifold.

(c) The set of permutations of n objects is not a manifold, as it is discontinuous.

(d) The set of solutions to xy(z? + y? — 1) is a manifold. The solutions form a unit circle, (22 + y? = 1),
as well as lines which span the a- and y-axes (z = 0, y = 0). The singular values occur at the points of
intersection: (0,0), (0, £1), and (£1,0).

2 On which of the manifolds in Exercise 1 is it customary to use a metric? What are those metrics? Why
would metrics not be defined for some?

(a) Phase space is comprised of two variables, p and ¢, each of which represent different physical quantities,
with incompatible units. For instance, if p is momentum and g is position, then p? + ¢? is non-physical.

(b) The metric for the interior of a circle in 2D Euclidean space would be the Euclidean norm in 2 dimensions.
While this could be given by (As)? = (Az)? + (Ay)?, it would be more natural to express in units of r and
0.

(As)? = (Az)? + (Ay)?
= (z — x0)* + (y — %)
=72 [(COSQ —cosfp)? + (sin@ — sin 00)2]
= r? [cos2 0 + cos? By — 2 cos 0 cos Oy + sin® 0 + sin” Hy — 2sin O sin 90]
=7?[1+1—2cos(f — )] = 2r*[1 — cos(A0)]

= 472 gin? (A6/2)

65
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(¢) This was not a manifold.

(d) Since this is again 2D Euclidean space, we could use the Euclidean norm in 2 dimensions. This time it
would be more natural to express distances in (z,y) coordinates, unless we restricted ourselves to the unit
circle portion of this manifold.

4 Prove the following:

(a) The number of independent terms in d2x® / oz ozt |p is 40.

The total number of components is 4%, however, we do not want to consider duplicate terms. To find the
number of duplicate terms in total, we find the number of duplicate terms for a fixed value of «, and then
multiply that by 4. The number of terms for a fixed o is 42, and of those, 4 are completely independent
(the diagonals), and the remainder exist in pairs. Since we only want one from each pair, we divide the total
count by two, which means that the total number of duplicate components is 4[(42 —4)/ 2], and so the total
number of non-duplicate components is 43 — 4[ (4% — 4) /2] = 40.

In the next part, I cheat and use a formula. I will apply it to this part first, to show that it works. If you

have a symmetric rank k£ tensor with n dimensions, then it has

)t

independent components. In the case of this problem, by fixing «, we get 4 rank 2 tensors of 4 dimensions,

and so the total number of independent components is

1
4(4+§ )-—4&

(b) The number for (9230@/63:)‘/696“/ 2" |p is 80.

Here, if we fix o, we have 4 symmetric rank 3 tensors of 4 dimensions, and so there are

4+3-1
4 =80
(757

independent components.
(c) The number for gog /. |p is 100.

If we interchange af, but fix 7'/, then we have a symmetric rank 2 tensor of 4 dimensions, which has

4+2-1
=10
()

independent components. Likewise, if we interchange +'i/ but fix a3, we get 10 independent components.
Multiply the two and we have 100 independent components.
7

(a) Define det(A) in terms of cofactors of elements.

det(A) = Z(—l)iJrja,i’jMLj = Z(—l)i+jai7jMi,j

j=1 =1
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(b) Compute <= det(A), where A is a 2 x 2 matrix. Show that this satisfies Equation 6.39.
First we note that, for A1, det(A) = aq,1. Thus, for Asyxe, M;

)

we can rewrite the determinant of Asy o as

2
det(A4) = Z(—1)i+fai7jai,,j,
=1

~

= (=1 ayjaz + (-1)az ary.
If we assume j = 1 (it doesn’t really matter if we choose 1 or 2), then this simplifies to

det(A4) = (=1)%a1,1a22 + (—1)%az1a1 2
=ai,102,2 — G2,101 2.

We can then see that the derivative is

0
oxH

det(A) = w(auam — a21a12)

= 11022, T 22011, — A21012,; — 012021,

Now to relate this to Equation 6.39, we let A be the metric g. Then the derivative of its determinant is

9.p = 911922, + 922911, — 921912, — 912921,

= 11922, + 922911, — 2912912,

Now if we expand Equation 6.39, we see we have

g = g11922 — 912921 = g11922 — (912)2
9% gap = 9" G110 + 9729200 + 292 912,00

99" gap = (g11922 — (912)*) (" 911,00 + 9%2 922, + 29" 12.,.)

= 022011, — 911(912)2911# + 911922, — 922(912)2922,;1, + 2911922912912,y — 29129124

= g11922, + 922911, — 29120912, + 2911922912912% - (912)2(911911,u + gzzgzz,u)-

67

i = ay y, where i # ¢’ and j # j'. Therefore

If it is the case that 2911922912912,# — (g12)2(gllgu7u —1—9229227”) = 0, then this is consistent with our previous

expression for g ,, but I'm not sure how to show that.

10 A “straight line” on a sphere forms a great circle. The sum of the interior angles of a triangle whose

sides are formed by arcs of great circles is greater than 180°. Show that the rotation of a vector, parallel

transported around such a triangle (Figure 6.3 in Schutz), is exactly equal to the excess of that 180° sum.

11 What guarantees we can find a vector field 1% satisfying:
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(a) The integrability condition follows from the commuting of partial derivatives, [61,, 6’5]1/0‘ = 0. Show
that this implies

(Fapﬂ,l/ - Fauu,ﬂ)v“ = (FQ;L,BFHUV - Fa;;urugﬁ)va =0

Since we must satisfy V<4 +I',gV*# = 0, then it must be the case that V5 = —TI'* V. Differentiating

both sides, we get

Vo = 1%, VI =15V,

=T 5, VI 4T, TV
Ve, = -T%,, ,VF + 1%, " v
Vi =Vius

> _FCVMB,VVH + FCEMBFHO.VVU = —FQ#V,BVM + Fauurﬂaﬁva

(Fa,u,ﬁ,v - Fap,u,ﬁ)vu = (Pa,uﬁl_wau - FQMVFMUB)VU

(b) By relabeling indices, we can work this into another form:

(Fapﬂ,u - Fauuﬁ)vﬂ = (FQUBFU;MJ - Faayrguﬁ)vlu

T =T #1907 = T 507, )V =0

13
(a) Show that if A and B are parallel transported along a curve, their dot product is constant along that
curve.

The dot product being constant along the curve means that it must be parallel transported along the

curve, i.e. Vg(/f B) = 0. We will now show this.
V(A B) = UMV \(gapA*B?)
= U/\(AO‘BBMJF gaBBBV)\Aa + ga/_;A“VABﬁ)
= BPUMV,A® + AUV ,\B.

Notice that the terms UV A® and UMV, B” are just the parallel transport equations, and so they

come out to be zero, meaning Vﬁ(/_f é) = 0, i.e. the dot product is constant along the curve.

(b) Show that if a geodesic is spacelike, timelike, or null somewhere, then it remains that way everywhere.

Since the dot product of two parallel transported vectors is constant, if we parallel transport a curve’s
tangent vector along itself (the geodesic), its magnitude (U - U) should remain constant. Since its

magnitude doesn’t change, it will remain spacelike, timelike, or null.

14 Show that if the curve in Equation 6.8 is a geodesic, the proper length is an affine parameter.
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é—f WdA

If the curve is a geodesic, we have just shown that the dot product of any two vectors remains constant along

Equation 6.8 states

the curve, and so we may pull it out of the integral.

\/7] d/\—W(Al—AO),

and so the proper length ¢ is indeed an affine parameter, as it can be obtained by a linear transformation of

the parameter of the curve, .
16
(a) Derive Equations 6.59 and 6.60 from 6.68.

Somehow Schutz uses a Taylor expansion to get 6.59 from 6.68. I honestly have no idea how he does
this, and Taylor expanding vectors and Christoffel symbols is black magic to me, so here’s my (obviously

wrong) attempt.

SV = J I,V da® — f I, V* da?
zl=aqa rzl=a+da

+ f re,,veds' — f e, v*da!
r2=b z2=b+5b

dz?
a

da?
a

b

)
- _(re 1v~) da!
)

dzt
b

but then a miracle occurred!!

N _LbJréb 581 (F‘“MQV“> da2

+ rw 5o (re,,v*) st

2
a ox

The next step actually does make sense to me. Since we are integrating over such tiny areas (da and

b)), Sa+6a f(z)dz ~ da f(a), so

Lb+éb sa Fre (FO‘HQV“) dz? ~ §a b aL; (FaugV“)7

L " a% (1, V") da' ~ sasb a% (T V).
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Subtracting the two gives us
5V ~ da db [—M(F ;L2VM) + @(F #1V'u'>:|.

(b) Derive Equation 6.61 from this.

Using a generalized form of Equation 6.53:

Ve = —T%5V"

we arrive at the expression
(F“V/\V”)’ﬁ =T, VYV + T\ Vg =T, V7 =TI, 5V".
Now we substitute u — v in Equation 6.60, and use this expression to find
BV~ 8adb [ —T% V7 + T oL, V7 4T, VY = T2, T,V |

X 5@ 5b I:Faul)z - ]_—\Oél/271 + FayQ]-—‘Vlu‘l - Faul]'—‘yﬂQ:IVV'

18

(a) Derive Equations 6.69 and 6.70 from 6.68.

1
Raﬂ/_w = i(gau,ﬁy — Yau,Bv + 9Bu,ov — gﬁu,au)
1
Rﬁauu = i(gﬁu,a,u — 98u,av t Jap.pr — gau.ﬁu)
1
= 5(_gau,f3p, + Gapu,pr — 9Bu,av + gﬂu,au)
= 7Raﬁ;w
1
Raﬂu,u = §(f/z\/p 30— Jaw,Bu T 9Bv.ap — gﬁu,au)
1
= 5(_.9(11/,5;1, + Yo, Br — 9Bu,av + gﬁu.au)
= _Raﬂuv
1
R,uuaﬁ = i(guﬁ,ua — Jpa,vB + Gua,us — guB,/mz)
1
= i(gul/,ﬂy = Jop.pr +* 9Bu,ov — gﬂy,au)
= Raﬂw

2(Ra6uu + Ravﬁu + Rauyﬂ) = YGav,fp — Jau.pr + 9Bu,av — 9pr,an
+ Gap,vp — Gap,vu + 9vB,ap — Jru,aB

+ 9aB. v — Gav,uB + Guv,aB — GuB,av
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=0

(b) Show that Equation 6.69 reduces the number of independent components from 4 x 4 x 4 x 4 to 6 x 7/2.

For a rank-2 symmetric tensor, you have (n/2)(n + 1) independent components. For an anti-symmetric
tensor you have (n/2)(n — 1) independent components. So for each of our pairs of anti-symmetric
indices, there are (n/2)(n—1) independent components. We can then treat the two pairs as a single pair

of symmetric indices, with that many possible values. The number of indices is therefore:
(1/2)[(n/2)(n = D][(n/2)(n — 1) + 1] = (1/2)[(4/2)(4 — D][(4/2)(4 = 1) + 1] = 6 x 7/2 = 21.

(c) Show that Equation 6.70 only imposes one additional relation, separate from Equation 6.69, reducing

the total independent components to 20.

The addition of Equation 6.70 adds the condition that R,[,,] = 0, and so the number of independent

() -C7)-()-=

19 Prove that the components of the Riemann tensor are all zero for polar coordinates in the Euclidean

components becomes

plane. Recall that:

[0y =1/r; TTgg=—r

Raﬁ;w = Faﬁw# - Faﬁu,v + Fadﬂrgﬁv - Fawraﬁu'
According to the computer algebra system, Maxima, the components are all zero.

(%1i1) load(ctensor)$
(%i2) ct_coordsys(polar)$

(%13) cmetric()$

(%i4) 1g;
(1 0 ]
(%o4) [ ]
[ 21
[0 r ]

(%i5) riemann(mcs);
This spacetime is flat

(%05) done



72

24 Using Equation 6.88, derive Equation 6.89.

Raﬁ/u/,)\ =
Ra,@)\u,u =

Ra,@l//\,p, =

2(Raﬂ/_w,)\ + Raﬁ)\,u,l/ + ROLBU)\“LL)

25
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1
5 Gavgux = Gappva + ppavs = Gov.apn)
1
5(9&/1,5)\” — JaX,Buv + 98\, apr — g,B}L,Oé)\V)
1

5(.9(1)\7[311“ — Jav,BAp + 9Bv,a u — gB/\,ou/p,)

= GJav,fur — +9 JTN77 N

= Gax,Buv T 98N, apv — 9Baiw

+ Gar,Bvp — Jav,fAu + — 9B\, avp
=0

(a) Prove the Ricci tensor is the only independent contraction of the Riemann tensor. All others are +R%;

or 0.

There are three possible ways to contract the Riemann tensor. If we contract on the second lower index,

we have the definition of the Ricci tensor: Rg, = Ro‘ﬁw.

The value of contracting the last index is the easiest to find, and can be found by manipulating the

above expression and invoking the anti-symmetry properties of the Riemann tensor:

Rﬂl’ = Raﬁau

= 7Ra5u(x = Raﬁva = 7Rﬁl/'

Given this identity, finding the value of the remaining contraction is easy. Equation 6.70 states that

Ra,@;w + Rauﬂu + Ram/ﬂ = 0.

If we raise the a’s with the metric, we get

gaﬁ (Rapuw + Ravpp + Rapwp) =0

Rr?

Rr°

(b) Show that the Ricci tensor is symmetric.

Buv

Buv

3 s _
+R 5 + R, =0

8 s _
+R,, —R’ 5 =0

B —
R, =0

Rﬁ” = Raﬁau

ga)\RBV = R)\ﬁoa/ = Ral//\B
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gaAga/\RBV = gaARaV)\ﬁ = RAVW =Ryp

- RBV = Rl,ﬁ

28

(a) Derive Equation 6.19 using the coordinate transformation (z,y,z) — (r,0, ¢)

We begin by finding the basis vectors in (r, 6, ¢), using
ey o

er = €y + €y + —¢€
" Thor Y or ¥

or
or_, Oy_ Oz

€y = %em + %ey + %ezv
e U, O
T
The variables transform according to
x = rsinf cos ¢,
y = rsin@sin ¢,
z =rcosf.
Now we take the derivatives
0 0 0
a—f:sinﬂcos¢, a—z:rcosecosqﬁ, a—;:—rsinesinqb,
0 0 0
a—?:=sin951n¢, a—Z;:rcosHsinqS, a—i=—rsin9cos¢,
0 0 0
a—i=cos€, a—;=—rsin9, £=0.

The basis vectors are therefore

€, = sin 6 cos ¢€; + sinfsin ¢é, + cos O¢e,
€p = 1 cos § cos ¢y, + r cos O sin pé,, — rsin be,

€y = —rsinfsin ¢e; + rsin 0 cos Pe,

Now we find the components of the metric tensor using the fact that g,z = €, - €3.

I

- € = (sinf cos ¢)?6,, + (sinOsin ¢)?6,, + (cos® 0)20,, + ...

)

Grr =
= sin” f cos® ¢ + sin” fsin” ¢ + cos? 6 = sin® 6 + cos? 0
= 1’

Goo = €p - €9 = (1 cosfcos ¢)*5,, + (rcosfsin )5, + (—rsind)?d,.

= 72(cos? f cos® ¢ + cos? sin? ¢ + sin? §)
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= r%(cos?  + sin* §)

= 7‘2’

Gop = €y €y = (—7sinbsin)?5,, + (rsinf cos §)?dy,

= r2(sin? @ sin? ¢ + sin? 6 cos? ¢)

= rZsin? 0.

Now for the off-diagonal elements, we take advantage of the symmetry properties of the metric to reduce

it from 6 terms to 3.

gro = Jor = 57' :

9ro = Gor = ér

90¢ = Jp0 = €p -

(sin @ cos @) (r cos 0 cos @), + (sin 0 sin ¢)(r cos 8 sin ¢)d,,, + (cos 0)(—rsinh)d, .,

€9

r (sin 6 cos 0 cos® ¢ + sin 6 cos 0 sin? ¢ — sin 6 cos 49)

=0,

- €y = (sin 6 cos ¢)(—rsin @ sin ¢)dy, + (sin @ sin @) (7 sin 6 cos ¢)dy, + (cos #)(0)0..

= r(—sin” #sin ¢ cos ¢ + sin? fsin ¢ cos P)
=0,

€p = (rcosfcosd)(—rsinfsin @)dz, + (1 cosfsin @) (rsin 6 cos ¢)dy,
= 1r%(— cos 6 cos ¢ sin § sin ¢ 4 cos @ cos ¢ sin O sin ¢)

=0.

The metric tensor in spherical polar coordinates is therefore

1 0 0
(gij): 0 r2 0

0 0 r2sin0

(b) Use Equation 6.19 to find the metric on the surface of a sphere.

On the surface of a sphere, r is fixed, and therefore Ar = 0. As a result of this, we do not need to

consider g, and the only relevant components become (6, ¢). So we can simplify the metric as:

=" "
9ij) = .
0 7r2sin%0

(c) Find the components of g®# on the surface of a sphere.

Since gog is a diagonal matrix, the components of its inverse are simply equal to their multiplicative
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inverse. So the matrix is
1/r? 0

(9i5) = :
0 1/r?sin@

29 Calculate the Riemann tensor of the unit sphere in spherical polar coordinates.

The metric for a unit sphere in spherical polars is

1 0
(glj) = 9 )
0 sin“6
and so one component of the Riemann tensor is
1 1
Rogop = 5 (900,60 = 900,60 + 960,06 = 990,00) = 5 (900,60 = 996.00)
S 2

Using the symmetry and anti-symmetry properties of the Riemann tensor, we find the remaining components:

R¢9¢9 = sin2 0

Rg¢¢9 = R¢99¢ = — Sin2 0.

All remaining components are zero, as they have indices 68060¢ or ¢¢¢pf, and the only non-zero second
derivative of the metric is g4¢,00, Which requires two of each index, not three.
30 Calculate the Riemann tensor on a cylinder.

The metric in cylindrical polars, (r, 0, z), is given by

1 0 O
(gi7) =10 +2 0]
0 0 1

On the surface of a cylinder (excluding the top and bottom) the radius is unchanging, so Ar =, as was the

case on the surface of a sphere. The metric can therefore be simplified in (6, z) coordinates as:

(Qz‘j) =

From the metric alone, it is obvious that the components of the Riemann tensor must all be zero. This is
because the Riemann tensor depends on second derivatives of the components of the metric, and the only
variable term is ggy = 7. Since we removed the dependence on the coordinate r, none of the terms in the

Riemann tensor will involve differentiating with respect to r, and therefore they will all be zero.
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32 A 4D manifold has coodinates (u,v,w,p), and a metric

01 00

1 0 0 O
(9ap) = .

0 010

0 0 0 1

(a) Show that the manifold is flat and has signature +2.

Since every element in the metric is a constant, gag ., = 0, and therefore Rng,, = 0, so the manifold is

flat.

The signature is just the sum of the diagonal elements, which in this case is 1 + 1 = 2.

(b) Since this manifold is flat and has signature +2, it must be a Minkowski spacetime. Find a coordinate

transformation to (¢, x,y, z).

Ag=n
Agg~t =ng™!
A =ng~' = ng (since g is symmetric)
-1 0 0 0)fo 1 0 0 0 -1 0 0
0 10 0]|[l1 00 0 1 0 0 0
(Aaﬂ)_ =
01 0lloo 10 0 0 10
0 00 1/J\0 0 0 1 0 0 0 1

33 A three-sphere (or glome) is the 4D analog of a sphere, with cartesian coordinates (z,y, z, w), described

by the equation 22 + y? + 22 + w? = r?, where r is its radius.
(a) Define coordinates (r, 8, ¢, x), given by

x = rsin x sin 6 cos ¢, y = rsin x sin @ sin ¢,

z = rsinycosb, w = TCcosY,

and show that (0, ¢, x) form the coordinates of the surface of the sphere.

Per usual, we begin by finding the elements of the Jacobian

A (z,y,2,w) = (r,0,0,X).
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Ox/0r = sin y sin f cos ¢, dy/dr = sin x sin @ sin ¢, 0z/dr = sin x cos b, Ow/0r = cos,
0x/00 = rsinxcosfcosp,  Oy/0f = rsinycosfsing, 0z/00 = —rsinysind, Jw/df =0,
0x/0p = —rsinxsinfsing, 0y/0p =rsinxsinfcosp, 0z/0¢ =0, ow/o¢ =0,

O0x/0x =rcosxsinfcosg, Oy/dx = rcosysinfsing, 0z/0x =rcosxcosh, Ow/dx = —rsiny.

the basis vectors are then

L Ox~

€¢ = 7660‘

€, = sinxsinfcos e, €y = rsinycosfcospe, €y = —rsinysinfsinge, €, = rcosxsinf cospe,
+ sin x sin 0 sin @€, + 7 sin x cos 6 sin ¢é), + rsin x sin 6 cos ¢é), + r cos x sin § sin g€},
+ sin x cos f¢e, — rsin x sin 0¢€, + rcos x cosf
+ oS X €y — rsin €y,

Notice that if we fix x = 7/2, this reduces to the basis vectors for 2D spherical polars.

The components of the metric can be found using g.s = €, - €3.

Grr = sin? y sin? 0 cos® g1, + sin? y sin? @ sin® PNy + sin® x cos® 0. + cos® XNuwuw
= sin? x(sin? @ + cos? ) + cos? x = sin® x + cos? y = 1
gog = 1° (Sim2 x cos? x cos? ¢, + sin® x cos? 0 sin® ¢m,,, + sin® y sin® 97722)

= 72 sin? y(cos? f + sin”® §) = 72 sin? x

oo = r? (Sim2 x sin? @ sin? ¢, + sin? x sin? 6 cos? (bnyy)
= r%sin” xsin? @

Iyx = r? ((3082 x sin? 6 cos? ¢, + cos? x sin? 6 sin? PNyy + cos? x cos? 01, + sin® xnww)

=r? (0052 x sin? 0 + cos? x cos? @ + sin? X) = r? (cos2 X + sin? X) = r?
To show that the off-diagonal terms are zero, I got lazy and used the Maxima computer algebra system.
Its naming convention and ordering for these coordinates is different, but it still makes it clear that the

metric is diagonal.

(%1i1) load(ctensor)$ /* load the component tensor package */
(%i2) ct_coordsys(spherical4dd)$ /* use the 3-sphere metric */
(%1i3) 1g; /* display the metric */

[1 0 0 0 ]
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(%03) [
[ 2 2
[0 0 r sin (theta) 0

[ 2 2 2

T T R N

[0 O 0 sin (eta) r sin (theta)

1 0 0 0

0 r2sin?y 0 0
(gij) =

0 0 r?sin? ysin?0 0

0 0 0 r?

(b) Show that the metric on the surface of the three-sphere only has non-zero components ggg, gse, and gy

On the surface of a three-sphere, r is unchanging, so Ar is always zero. Thus, we may reduce the

dimensionality of the metric to 3: (6, ¢, x).

r? sin? y 0 0
(9i5) = 0 r2sin? ysin?0 0
0 0 r?

34 Prove the following identities for a general metric tensor in a general coordinate system. Equations 6.39

and 6.40 will be helpful.

(a) T, = 3(Inlg]).,

= (ln 191).»

e WDy 1 (9w (0
N RN AN e T i

nv

(b) g T, = (—9°°\/=9).5/v/~9

9T, = —(9*°V=9) s/V=9
= (0" (V=9).5 + 9 sV =9)/V =9
= —(""(V=9) s/V=9+ 39" 5)
= —(g*T 5 + 9% )
%g“”gﬁ (9w + 9o — ) = —(9°° 9 9r0,8/2 + 9°° )

1
59" 9" Gu + 9ov.) = 8" 9" 9u5/2 = ~(6°7 9 9r0./2 + 9°7 )
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1
iguygﬁa(gﬁu,v + g[ﬂu,u) = 7gaﬁ,5
L@ ge + P gs) =~
2 v98u n9Br .8
1
B KB — af
_5(56119 a,y + 6[3 g a”u,) =9 B

1

o \_ _ aB
5207 5) =975

(c) F¥1, = (y=gFlm) /=g
F[MV];V = F[”V],V + F[MU]Faua = (F[NV],V V—g -+ FMV(V _9)711)/\/ 9= (\/ _gFW/),V

(d) 9% 9gopy = =9 908 We start with g*?g,p = (50‘5. Then we differentiate both sides to get

gaa,'yg(rﬁ + gaggaﬁ;y =0

9908~ = —9°7 908

(e) guy,a = _Fuﬁagﬁy - Fuﬁaguﬁ

g'uy;a = gl“/ + Fuﬁagﬁy + Fyﬂaguﬁ =0

e’

gV = _Fuﬁagﬁu — F”ﬁag“ﬁ

,Q
35 Compute the metric tensor, Christoffel symbols, and Riemann tensor for a spacetime with line element:
ds® = —e2® dt* + €2 dr? + r2(d6* + sin? 0 dg?).

Based on the line element, the metric must be

—e22 0 0 0 —e 2% 0 0 0
0 e2A 0 0 b 0 e~2A 0 0
(9ap) = (9™")
0 r2 0 0 0 1/7"2 0
0 0 0 7r2sin0 0 0 0  1/r?sin®0

For the rest of this problem, I took advantage of the Maxima computer algebra system. According to it, the

non-zero, unique Christoffel symbols are

, do do
T = exp(?@ — 2A)$ Ftrt = 5
dA 1
I, = — rl,=1r%, ==
rr ar o T r
Iy = —exp(—2A)r F¢0¢ = cot §
[",s = —exp(—2A)r sin? @ F9¢¢ = —sinfcosf
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The independent non-zero components of the Riemann tensor are

d® /dA do d2o 1 d®
Rigro = eXP(2((I) - A)) ldr <d7“ - dr) — ﬁ Rigro = thbtgb = f; eXp(2(<I) — A))E
dAd®  d2®  [do\’ 1dA
Rire = E@ B W - (d’l‘) Rogrg = RT¢7"¢ = _;a
Rogpg = exp(—2A) — 1 Rypoo = exp(—2A) (exp(2A) — 1) sin® ¢
d® dL
Rggtt = —r GXP(—QA)E Rogrr = rexp(—ZA)g

36 Consider a 4D manifold with coordinates (¢, z,y, z) and line element
ds® = —(1 +2¢) dt* + (1 — 2¢)(dz® + dy® + d2?),

with |@(¢, z,y,2)| « 1. At an arbitrary point P with coordinates (tg, xo, Yo, 20), find a coordinate transfor-
mation to LIF. How does this frame accelerate with respect to the original coordinates? Do all of this to
first order in ¢.

By inspection of the line element, we can see that the metric has components

—(1 4 2¢) 0 0 0
0 (1-2¢) 0 0
(gaﬁ) -
(t2.3.2) 0 0 (1-—2¢) 0
0 0 0 (1—2¢)

We want a transformation to a Minkowski spacetime, i.e.
A A 5 garsr = Nap.

Now, there may be multiple transformations which satisfy this, so we need only find one. Since both g and

7 are diagonal, I assume that A is diagonal as well, and find its components.

TNoo = AO/OAO/()QO/O’ Nii = AiliAi/igi’i’
—1=(AY)%(—(1 +2¢)) 1= (A")%(1 —2¢)
AY) = (1+2¢)712 AT = (1 2¢)7V2

Since we know that ¢ is small, we can use the approximation (1 + 2)~'/? = (1 — 2/2) + O(2?), to find
N ) A~ (14 0)

(39)



Chapter 7

Physics in a curved spacetime

7.6 Exercises

1 If Equation 7.3 were the correct generalization of 7.1 in a curved spacetime, what are the implications?
What would happen to the number of particles in a comoving volume of the fluid over time? May we
experimentally distinguish between Equations 7.2 and 7.37

The number of particles would change proportionally to the square of the Ricci scalar, which corresponds
to the curvature of the manifold. Whether particles are created (+) or destroyed (—) would depend on the
sign of ¢ in the equation.

We could set up some experiment which tests for a change in the number of particles in a moving fluid, in
various gravitational fields, to verify whether the RHS of the equation is non-zero.

2 Compute ¢g*? for the line element given by Equation 7.8, to first order in ¢.

Based on the line element, we can infer that the metric is

—(1 4 2¢) 0 0 0
(9as) vt 0 ’
(t.y,2) 0 0 (1—2¢) 0
0 0 0 (1-2¢)
—(1+2¢)7! 0 0 0 —(1—2¢) 0 0 0
G 0 (1—2¢)"! 0 0 N 0 (14 2¢) 0 0
(t2,y.2) 0 0 (1—2¢)1 0 0 0 (1+2¢) 0
0 0 0 (1—28)! 0 0 0 (1+2¢)

3 Calculate the Christoffel sybmols for the metric given by Equation 7.8, to first order in ¢, assuming
(b = ¢(ta z,Y, Z)

I do the following with the assistance of the free computer algebra system Maxima. I used the exact form of

81
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the metric tensor, and then approximated the resulting Christoffel symbols to first order in ¢.

1 6¢1~6¢

¢ 9

t ~ _ « — ~ —
;09 109 I
Ftt_@xi172¢~6xi<1+2¢) T = at1+2¢”at(1 29)

) . ) oo 1 0o

7’--:—]..:—7‘..: I~

Pog =0y =i = g ~ a1+ 29)

5

(a) In the case of a perfect fluid, verify that the spatial components of Equation 7.6 reduce to
v+ (v-V)o+Vp/p+Veop=0

in the Newtonian limit and in the weak-field regime (the metric given by Equation 7.8).

" = (p+p)UMU" + pg"”
~ pUMUY + pg™”
~ mU*(nU") + pg"”
T ~ mU*(nU") + pg™
T, ~m[U"(nU")], + [pg™ ], = mnU"U", + ¢"'p, = 0
= 0=U"U") +9"pu/p
=U"(U", +UPTY,) + 9" po/p

=UU' + VU ; + UYUPTYy, + 9"pu/p

d i ToR v i ii
= 75(%} )+ vl (') ; + UYUPTYy, + ¢"'p.i/p
~ Wi (02, + (1= 20)p./
~ar i 00 P,i/P
dv?

&* ar +vjvfj + ¢, +p7¢/,0

rewriting this in vector form, we get the original equation.

(b) Now look at the time-component instead of the spatial component.

T% = (p+p)U°U" + pg” ~ mU°(nU") + pg™
%, = m[U°(nU")]., + [pg™ 1w = mnU"U®,, + ¢°°p, = 0
= 0= U”UO;V +¢%%/p

= UV(UO,V + U)\FO)\V) + gO()p/p
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=UU°, +U'U°; +UYUY,, + ¢"p/p

S yar ot HUTU e — (L 200/
~ %C}i—f %vlj—j +U"UT,, —p/p

~ %%%?4_%viiij4—U”U0¢W<—P/P

~ %C;L: %viji +o+0vh; —p/p

83

(c) A metric is static if there exist coordinates such that & is timelike, g0 = 0, and go,0 = 0. Show from

Equation 7.6 that a static fluid (i.e.

equilibrium (Equation 7.40):

pit(p+p) [; ln(—goo)] = 0.

52

We start by writing out Equation 7.6 as

T,

[(p+P)U*U" ] + [pg"" ] = 0

=[(p+p)U"U", +[(p +p)U"IU", + U"U"(p+p)y +9"p, =0

=T% + 79, +T% + T =0

%% =1lp +p)U°]U o+ [(p+p)U°TU % + UU(p+p).o + 9% po

01
T,

30
™,

.

2(p +p)U°U

2(p +p)U° [ o +UT%,]

2(p+p)U ] %0 =0

=[(p + UV, + [(p+p)U’IU; + U'U(p+p) j + 9",

g”p,j

=[(p+p)U°IU"; + [(p+ U U + UV (p+p),i + ¢"pa

= [(p+pU°IU; = (p+p)U°[U"; + UMY,
(p+D)U°T

S0P (0 + D)™ (g0 + 9005 — o) = 0

[(p+p)UTU % + [(p+p)UIU" + UU (p+ )0 + 9P
[(p+p)U°IU"y = (p+p)U°[U"y + U°T" ]

%(P +p) [UO]ng(gao,o + 9a0,0 — 900,a) = *%(P +p) [UO]QQUgOO,]
%(P +p)g" 900,5/900 = %(P +p)g"” In(—goo) ;

1 .
5 (P +p)g" In(=goo) ; = 0

+o )| ying0)| =0

»J

97p; +

U' =0, po = 0, etc) obeys the relativistic equation of hydrostatic
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(d) This suggests that there is a relationship between goo and exp(2¢) in the case of a static fluid in a
Newtonian potential. Show that Equation 7.8 and Exercise 4 are consistent with this.
In the Newtonian limit, the previous equation is unchanged when replacing ngoo with — exp(2¢), as ln(exp(2q$))

2¢ ;, and

(1 + 2(;5)1
1+ 2¢

=20:(1+20)"" ~2¢(1—2¢) ~ 2¢.;.

ln(—ggo),i =In(1+ 2¢))7i =

I'm not really sure how to relate this to Exercise 4, as it relates ¢ , to four-momentum, while this relates it
to pressure and density.
7 Consider the (i) Minkowski, (ii) Schwarzschild, (iii) Kerr, and (iv) Robertson—Walker metrics.
(a) Find the conserved components p,, of a the four-momentum of a particle in free-fall.
For this I will use Equation 7.29:
dpg 1

m = —gq, Yp®.
dr 29 a,BP P

What this tells us is that if g is independent of z#, then p, is constant along the trajectory.

For (i), the metric is independent of all coordinates (¢, z,y, z), and so all p, are conserved.

For (ii), the metric depends on coordinates r and 6, but not ¢ and ¢, so only p; and p, are conserved.

For (iii) we have the same dependencies as (ii).

For (iv) there is an additional time dependence, and so only pg is conserved.

(b) Use the metric for a flat spacetime in spherical polar coordinates to argue that the Schwarzschild and
Robertson-Walker metrics are spherically symmetric.

Our metric in (i) can be expressed in spherical polars as
ds® = — dt* + dr? + 72(d6? + sin® 6 d¢?).

The Schwarzschild metric can be obtained from this by multiplying d¢* by (1—2M/r), and dividing dr? by
it. This newly introduced term only introduces a new radial dependence (the 7~! term), not an angular one,
so it retains spherical symmetry.
The Robertson—Walker metric can be obtained by dividing dr? by (1—Fkr?), and then multiplying everything
except dt? by R2(t). Again, the (1 — kr2) term only introduces a radial dependence in its r2 term, and for a
given time t, R%(t) is a constant, so spherical symmetry is retained.
(c) For (i") and (ii)—(iv), a geodesic which at one point has § = 7/2 and p? = 0 (i.e. tangent to the equatorial
plane) conserves these quantities. For (i’), (i), and (iii),use - 7 = —m? to find p" as a function of m, other
conserved quantities, and known functions of position.
(i)

0

77 = 9asp"P’ = 9aa(@®)® = g1 (p")* + grr(p")* + gee(}vf)Q + 9p6(0?)°

N2
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1
= =" + (p") + s Op?)* = —m?
— (pr)Z _ (pt)2 o 7’2(p¢)2 o m2 _ gtt(pt)Q o 7,29¢>¢>(p¢)2 o m2 _ 7(pt)2 o (p¢>)2 o m2

— 7 = /(02 + (p9)? + m?]

B0= 9u(@)? + 9 (") + g0 (0°)?
—(1=2M/r)(p")* + (1 —2M/r) " (p")? + TQM])1¢)2 = -—m?

(1= 2M/r)[(1 = 2M /r)(p")* = *(p*)* — m?]

— (p)?

—(1 = 2M/r)[(1 = 2M/r)(p1)* + (pg)* + m?]

(iii) This metric gets a bit messy, so I will keep things more abstract. First, I will simplify the metric,

utilizing the fact that 6 = w/2.

A —a? OM 2 1 a2)2 — 2A 2
ds® = — 2“ dt* — 2 adtd¢+(r +“)2 T2496% + T ar? + 12d6?
r r A
A—a? r? 2. (r* + a*)? — a®A 2Ma
gt = _Ta Grr = Z, goo =15 Gepop = r2 v Gt = — r )
A=a® —2(D —rHa* + (r* — 4M>*r?* — 2Dr? + D?)a* — Dr?
D 1

gt =7r%(a* — (D —2rHa® +rt)/\; g7 = - g = - g%? =r*(a® - D)/\;  ¢'® = 2aMr3)),

.
7= + grr(P")? + 906 (p%)* + 2916 (p'p?) = —m?

p= i\/ —9""[9u(P")* + 956 (P?)? + 2916 (P'P?) + m?]
P’ = 9"pa = 9%°pr + 9"%py

p? = g% pa = 9"%py + 9"p;

(d)

When k = 0, the line element and metric become

ds? = —dt* + R*(t)[dr? + r?(d6? + sin? 0d¢?)]

g = —1; g = R%(t);  gea = R2()r% g = R*(t)r?sin® 6.

Equation 7.29 with 8 = r then becomes

d 1 1
m dZ:ﬂ = §gya,7"pypa = i[gtt,r(pt)z + grr,r(pr)2]'

Since gitr = Grrr = 0, the RHS becomes zero, and so

m dp;
dr

=0 = p, is conserved.

8 For a coordinate system where gog, = 0:
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(a) Show that T",., = 0 becomes
1
——(v/=gT",), = 0.
\/TQ( 2

For this, I will make mathematicians cry, and go from the solution backwards to the starting point. So I

expand the final expression, first using the Leibniz rule:

and then using Equation 6.40:

™, +T°

= 0.

av

Just pretend I did that backwards. Next I expand 7%, , to show that the above expression makes it zero.

™., =1°,+T,1",, - T,.1%,

v

=T1",,+T°,1%,—T,T%,.

Note that the positive terms are just the expression from before, which we showed was zero, so we're left
with
0, =T,1%,.

Now we expand this

1
TVU«%V = _§TVO‘ gaﬁ(gﬂu,v + Y — Guv,8)

1

1% 1 124
5T P (9puw — Guwp) = —§T( D Ay = 0.

0

(b) Suppose T is zero except in a bounded region of the space-like hypersurface 2° = constant. Show that

Equation 7.41 implies that
J T, N —gny 3z
29 =const

does not depend on z°, so long as n,, is the unit normal to the hypersurface.

Using Equation 7.41 and the differential in Equation 6.18, we take the integral

1 v 4 . — v 41, 45(}
fNW—*gTH)mfgdm—f(NT#),yd dz.

Now we use Equation 6.44:
J(\/ng”N ), drrdie = %y/—gnl,T”u d3s
= f vV—gn,T%, d3z
z0=const

(¢) Now consider flat Minkowski space with a global inertial frame in spherical polar coordinates. Show that,

from part (b), we have

J = J T° r?sin 6 dr d6dg,
t=const
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which is independent of ¢. This is the system’s total angular momentum.
Since we are in flat Minkowski space, the unit-normal one form has components 1 — (1,0, 0,0), so only the
TOM term is retained. We also have 2° — ¢, so we can write the expression from (b) as
0 13
V—gT", d°x.
t=const

We also know that ./—¢g d3z in spherical polars is r2 sin @ dr dfd¢, so we can write this as

f T°, r*sin 6 dr dfde.
t=const

Taking the ¢ component of TOM, we get something which we call J:
J = L_ ) T0¢ 2 sin O dr dfd .

(d) Now express the previous integral in terms of the components of T°# on the Cartesian basis, ultimately
arriving at

J = f(xTyO —yT™) dz dy dz

J J T° v sin 0 dr dfd¢
t=const

J Aa(z,TOa r?sin@ A3z
t=const

p 0 1 0 z 0 3
chonst(A”¢T v+ A”¢T y TAT,)d%x

f ((=rsin@sin )T, + (rsinf cos¢)T%, + (0)T°,) d*z
t=const

f (mToy —yT° ) d3x
t=const

f (nyy-rToy - nwmyTox) 4’z
t=const

f (xT% — yTO%) A3z
t=const

10
(a) Show that if the vector field £~ satisfies Killing’s equation,

Vafﬂ + Vﬁfa =0,

then p®¢, is constant along a geodesic.
If p*¢, is constant along a geodesic, then p*¢,.3 = 0, so we simply have to show that this follows from
Killing’s equation.

Killing’s equation can be rewritten as

Epia +€aip =0 = Epia = —Easp-
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Now we combine this with the geodesic equation,
pafﬁ;a = _paga;ﬁ = 0.

And there we have it!

(b) Find ten Killing fields for Minkowski spacetime.

Since the basis vectors in Minkowski spacetime are all constant, V gé, = 0, and so we get four from €}, €,
€y, €,. According to part (c), we get a Killing field from any constant linear combination of these four, and
so from that we may create an infinity of Killing fields. Schutz’s solutions manual also lists expressions such
as xe; — te, as Killing fields, which are linear combinations, but the coefficients are non-constant. I give an
attempted derivation below, although at the very last step it turns out not to work, and I pretend it does

anyway. I claim that the general form of Schutz’s expressions is: z%ég — zPe,.

Va(2%€s) — Va(27€s) + V(278s) — V(aPes) = 2,85 — 27,80 + 2% 585 — 2”48,
= 85— €q — 27 0 + 2% 385
=€ — €0 — A0 + A4
(magnets at work here)

:gg—ga—55+€a:0

(c) Prove that any constant linear combination of two Killing fields E and 177 is itself a Killing field.

Vb, +V,6,=0
Vi + Vun, =0
V(e + Bny) + Vi (adu + Bny)
=aV & + BV, +aV,E, + BV,

=a(V, & + V6 +B(Vun, +Vun,) =0

(d) Show that the Lorentz transforms of the fields in (b) are also Killing fields.

Applying a Lorentz transform A¥, we get the expression A*, (xaé'g —af é’a).

Vo [A* (2985 — 2PE,)] + Vs[A", (2P, — x%¢3)]
=\, (278 — 2P€,) + (aPen — 2E5)]

=A", [z%€s —x%ép + 2Pe, —2P¢,] =0

(e) Use the results in Exercise 7(a) to find Killing vectors for the non-Minkowski metrics listed in (ii)—(iv).

(ii) Since the conserved quantities are p; and py, then the Killing fields are any constant linear combinations
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or Lorentz transforms of €}, €y, and @&, — téy.
(iii) Same as (ii).

(iv) Only py is conserved, so any constant multiple of € is a Killing field.
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Chapter 8

The Einstein field equations

8.6 Exercises

3
(a) Calculate in geometrized units:

(i) the Newtonian potential of the Sun at its surface
¢ = —GMp/Re ~ —1.476 x 10°m/6.960 x 108 m ~ —2.12 x 107°
(ii) the Newtonian potential of the Sun at the radius of Earth’s orbit
¢ =—-GMe/1 AU ~ —1.476 x 10° m/1.496 x 10! m ~ —9.866 x 10°
(iii) the Newtonian potential of the Earth at its surface
¢ = —GMg/Re ~ —4.434 x 1072 m/6.371 x 10°m ~ —9.660 x 10~1°

(iv) the Earth’s orbital velocity

Here I use the result from part (c), and find that
v=1/—0¢~9.933 x107°

(b) If the potential due to the Sun at Earth’s orbital radius is greater than the Earth’s potential at its surface
(as is shown above), then why do we feel the Earth’s gravity more than the Sun’s?

We don’t feel the potential directly, we feel the gravitational acceleration it produces. Acceleration is obtained

from the potential via a = —V ¢, and in the case of a circular orbit in a Newtonian potential:
J 2
a=-Vo¢= —5(—GM/7’) = —Gm/r° = ¢/r.
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So in the two cases mentioned, we need to divide by the radius once more, to obtain the acceleration.

ae = ¢po/1 AU ~ —6.595 x 1072 m ™!

ae = pa/Re ~ —1.092 x 10716 m1

As you can see, the acceleration due to the Earth is greater by a factor of 10%.

(c) Show that a circular orbit in a Newtonian potential has an orbital velocity v? = —¢.

We saw above that a = ¢/r, and we also know that centripetal acceleration is given by a = —v?/r. Equating
the two we get v? = —¢.

8

(a) Show that R% , = 1%’ Ropuw + O([hap)?).

Raﬁ,uu _ gaaRJﬂ#U _ (naa + haU)RJB;w _ naURUﬁ,uV + haaRa‘ﬂlLl/

oo 1 oo
N Roy = 5H07 (B + A = oo = o) = Ollhas]?)

(b) Find Rap to first order in hy,,.

Ra[‘]#u ~ 77w RU,BNV

(VLO‘RaﬁliV ~ RBV ~ 5”(177&03013#:/ & nHURaﬁ#u

(c) Show that gagR = a0 Ry + O([hap]?).

R=g" Ry = 0" + W) Ry = 1" Ry + 0" Ry, = 1" Ry + O([hap]?)

9apR = gap" Ruw + O([hap)?®) = (s + hap)n™ Ry + O([has)?) = napn®™ Ruw + O([has]?)

(d) Use this to show that Gag = Rag — 37asR.

1 1 , 1
Gap = Rap = 59ap7 = Rap = 5 0lasn™ Ryw) = Ras = 5nap R

(e) Now use this to simplify the calculation of Equation 8.32.

I got stuck here. T began by expanding the expression in (d) using the results from previous sections, shown
in Figure 8.1a. Then I expanded Equation 8.32, to get it in a more similar form, in Figures 8.1b and 8.1c.
I did this with the hope of matching terms in the two equations, but was only able to match one. I believe
something that would help me get further is Equation 8.33, ﬁ“”,u =0.

9

(a)
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(b) ()

Figure 8.1: Incomplete solution to Problem 8.8 (e)

I start by making a slight rewrite of Equation 8.32, changing the second h term.

v

naﬁﬁ;w’lw = %ﬁﬁ“aﬁw,a’y = Eﬁu,a7
So now the Einstein tensor can be written as
1 A SH 7 g h M h K 2
Gap = =5lhap ™ +pu0” = haps” =lgua™ + O[has]?)]-

For Ggg we then have

1 = - v T 1
Goo = _Q[hoo,;/” +hoyo” = oo™ = oo™ + O([hoo])]

1 _ _
= _i[hoo,u’ﬂ —hguo’ + O([hoo]®)]

1o+ T = T
= _5[(h00,0’0 +hooi) — (hoo,o’0 +hoio") + O([hoo]*)]

[
= _§[h00,i’ —hoio" + O([hool*)],

which contains no second time derivatives. For Gg; I encountered a problem:

1 L _
Goi = _E[hOi,,u’M R0 = Rt = o™ F O([hoi]?)]
1 - _
= _E[hm,u’u —ho" + O([hoi]*)]
1

= _‘[(BOi,O’O + Boz‘,j’j) - Bow"u + O([hoi]*)],

[\)

which retains a second time derivative in the }_lOi 0’0 term.
b
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(b)
According to Schutz’s solution it is not a contradiction, due in part to Equation 8.33. I don’t fully understand
the reason, though.

11 Write the gauge transformation and Lorentz gauge condition in four-tensor notation for Maxwell’s equa-
tions. Draw an analogy with linearized gravity.

First we rewrite ¢ — ¢ — 0f/0t as —Ag — —Ao — f0, and cancelling the negatives we get Ay — Ao + fo.
Combining this with 4; — A; + f;, it is obvious that the gauge transformation generalizes to Ay, — Aq+ f -
The Lorentz gauge condition is just slightly less obvious. We start by noting that Ay = —¢, and therefore
(in Minkowski space) A° = n%A4,, = ¢4y = (—=1)(—¢) = ¢. Then the Lorentz gauge condition becomes
A g+ A" =A% =0

13 Give a physical justification for |T00| »> |T0i| > |Tij| in a Newtonian system.

The first inequality is easy to see. T% = E/V = p"/V, and T% = p'/V. In the Newtonian limit, [p°| » |p’|,
and so it follows that |7°0] » |T%|.

The second inequality is less obvious. In the Newtonian limit, forces must be relatively small, or else objects
would be accelerated to relativistic speeds. By this argument, the stresses must also be relatively small, and
so T » T,

17

(a) First I need to convert the orbital period into meters.

24 hours " 3600 seconds
1day 1 hour

T = 200 days x X ¢~ 5.18 x 10 m

Then I use the potential to find the speed, which I relate to the circumference and orbital period, and solve

for the mass.

¢ =—-GM/r

M =’r/G = C3/(2nT?G) ~ (6 x 10 m)3 /(27 (5.18 x 10'° m)%G)
1M

~1.281 x10°m x ——————
1.476 x 10°m

~ 0.868M¢o

(b)

Using the above formula, I get a distribution of mass estimates, shown in Figure 8.2. Closer to the black hole,
the Newtonian approximation breaks down, and the “effective mass” blows up. Far from the black hole, we
can see that the effective mass is in agreement for all of the sattelites, and so the Newtonian approximation

is working again. Thus, I use the furthest sattelite to find that the black hole’s mass is 68 Me.
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Figure 8.2: Black hole mass estimates in Problem 8.17, as a function of sattelite circumference.
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