The Precession of Mercury's Perihelion

Where Newton failed and Einstein succeeded.

Dan Wysocki
SUNY Oswego
QUEST 2014

Introduction

- throughout human history, many explanations have been put forth to explain the motions of the stars and planets, with varying degrees of success

Introduction

- throughout human history, many explanations have been put forth to explain the motions of the stars and planets, with varying degrees of success
- many models were accurate during the lifespan of the people who created them, but over long periods of time began to lose accuracy

Introduction

- throughout human history, many explanations have been put forth to explain the motions of the stars and planets, with varying degrees of success
- many models were accurate during the lifespan of the people who created them, but over long periods of time began to lose accuracy
- eventually a new model comes along which takes its place, until yet another model replaces that one

Geocentric Model of the Universe

- most ancient view of the Universe

Geocentric Model of the Universe

- most ancient view of the Universe
- Earth is located at the center of the Universe

Geocentric Model of the Universe

- most ancient view of the Universe
- Earth is located at the center of the Universe
- all stars and planets move about the Earth

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"
- the Sun,

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"
- the Sun, the Moon,

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"
- the Sun, the Moon, Mercury,

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"
- the Sun, the Moon, Mercury, Venus,

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"
- the Sun, the Moon, Mercury, Venus, Mars,

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"
- the Sun, the Moon, Mercury, Venus, Mars, Jupiter,

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"
- the Sun, the Moon, Mercury, Venus, Mars, Jupiter, and Saturn

Celestial Sphere and Planets

- stars lie on a great sphere which encircles the Earth, and rotates once per day
- the obvious exceptions to this rule are the 7 classical "planets", or "wanderers"
- the Sun, the Moon, Mercury, Venus, Mars, Jupiter, and Saturn
- these planets were thought to circle the Earth in their own paths, presumably closer to Earth than the sphere

Retrograde Motion of the Planets

- the planets' orbital paths appear to make small loops in their otherwise circular orbits

Retrograde Motion of the Planets

- the planets' orbital paths appear to make small loops in their otherwise circular orbits
- difficult to explain this in a geocentric model

Retrograde Motion of the Planets

- the planets' orbital paths appear to make small loops in their otherwise circular orbits
- difficult to explain this in a geocentric model
- most explanations involved "epicycles"

Epicycles

- planets were thought to have a secondary orbit about their main orbit

Epicycles

- planets were thought to have a secondary orbit about their main orbit
- if tuned just right, these could predict the motions of the planets for years

Epicycles

- planets were thought to have a secondary orbit about their main orbit
- if tuned just right, these could predict the motions of the planets for years
- slowly they would go out of sync with observations

Geocentric Complexity

Geocentric Complexity

Proper Motion

- Edmund Halley discovered in 1717 when comparing his star maps to those of Timocharis and Aristyllus (300 B.C.E.) and Hipparchus (150 B.C.E.), and noticed that the stars' positions had changed since then

Proper Motion

- Edmund Halley discovered in 1717 when comparing his star maps to those of Timocharis and Aristyllus (300 B.C.E.) and Hipparchus (150 B.C.E.), and noticed that the stars' positions had changed since then
- all of the stars as a whole had advanced 25° in longitude

Proper Motion

- Edmund Halley discovered in 1717 when comparing his star maps to those of Timocharis and Aristyllus (300 B.C.E.) and Hipparchus (150 B.C.E.), and noticed that the stars' positions had changed since then
- all of the stars as a whole had advanced 25° in longitude
- apart from that, the stars had all drifted in seemingly random directions and speeds

Proper Motion

- Edmund Halley discovered in 1717 when comparing his star maps to those of Timocharis and Aristyllus (300 B.C.E.) and Hipparchus (150 B.C.E.), and noticed that the stars' positions had changed since then
- all of the stars as a whole had advanced 25° in longitude
- apart from that, the stars had all drifted in seemingly random directions and speeds
- some of the brighter stars had drifted by almost an entire degree

Copernican Revolution

- in 1543, Nicolaus Copernicus published the first model of the Solar system which accurately put the Sun at the center, with the planets (including Earth) orbiting it

Copernican Revolution

- in 1543, Nicolaus Copernicus published the first model of the Solar system which accurately put the Sun at the center, with the planets (including Earth) orbiting it
- not a perfect model, but was able to simplify the motions of the planets

Copernican Retrograde Motion

- explains the retrograde motion without any epicycles

Copernican Retrograde Motion

- explains the retrograde motion without any epicycles
- the motion is only apparent

Copernican Retrograde Motion

- explains the retrograde motion without any epicycles
- the motion is only apparent
- same effect as passing a car on the highway

Copernican Retrograde Motion

- explains the retrograde motion without any epicycles
- the motion is only apparent
- same effect as passing a car on the highway
- both cars are moving forward, but the slower car appears to be moving backwards

Kepler's Laws

- first elegant, mathematical, and highly accurate model of the Solar system

Kepler's Laws

- first elegant, mathematical, and highly accurate model of the Solar system
- corrects Copernicus' false assumption that orbits are circular, when they are in fact elliptical

Kepler's First Law

- orbits are elliptical

Kepler's First Law

- orbits are elliptical
- r - a planet's distance from the Sun

Kepler's First Law

- orbits are elliptical
- r - a planet's distance from the Sun
- r_{0} - distance of closest approach to the Sun, or "perihelion"

Kepler's First Law

- orbits are elliptical
- r-a planet's distance from the Sun
- r_{0} - distance of closest approach to the Sun, or "perihelion"
- ϕ - angle travelled from perihelion ($\phi=0$ at the perihelion)

Kepler's First Law

- orbits are elliptical
- r - a planet's distance from the Sun
- r_{0} - distance of closest approach to the Sun, or "perihelion"
- ϕ - angle travelled from perihelion ($\phi=0$ at the perihelion)
- ε - eccentricity of the orbit

Kepler's First Law

- orbits are elliptical
- r - a planet's distance from the Sun
- r_{0} - distance of closest approach to the Sun, or "perihelion"
- ϕ - angle travelled from perihelion ($\phi=0$ at the perihelion)
- ε - eccentricity of the orbit

$$
\begin{equation*}
\mathrm{r}=\mathrm{r}_{0} \frac{1+\varepsilon}{1+\varepsilon \cos \phi} \tag{1}
\end{equation*}
$$

Kepler's Second and Third Laws

- Kepler's second law
- orbit sweeps out equal areas in equal times

Kepler's Second and Third Laws

- Kepler's second law
- orbit sweeps out equal areas in equal times
- A - rate at which area is swept out

Kepler's Second and Third Laws

- Kepler's second law
- orbit sweeps out equal areas in equal times - A - rate at which area is swept out

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=c \tag{2}
\end{equation*}
$$

Kepler's Second and Third Laws

- Kepler's second law
- orbit sweeps out equal areas in equal times
- A - rate at which area is swept out

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=c \tag{2}
\end{equation*}
$$

- Kepler's third law
- P - orbital period

Kepler's Second and Third Laws

- Kepler's second law
- orbit sweeps out equal areas in equal times
- A - rate at which area is swept out

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=c \tag{2}
\end{equation*}
$$

- Kepler's third law
- P - orbital period
- a - semi-major axis

Kepler's Second and Third Laws

- Kepler's second law
- orbit sweeps out equal areas in equal times
- A - rate at which area is swept out

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=c \tag{2}
\end{equation*}
$$

- Kepler's third law
- P - orbital period
- a - semi-major axis

$$
\begin{equation*}
\frac{P^{2}}{a^{3}}=c \tag{3}
\end{equation*}
$$

Newtonian Gravity

- Sir Isaac Newton (1642-1727)

Newtonian Gravity

- Sir Isaac Newton (1642-1727)
- for the first time in history, a physical explanation of the planets' motions was found

Newtonian Gravity

- Sir Isaac Newton (1642-1727)
- for the first time in history, a physical explanation of the planets' motions was found
- F - force of gravity

Newtonian Gravity

- Sir Isaac Newton (1642-1727)
- for the first time in history, a physical explanation of the planets' motions was found
- F - force of gravity
- m - mass of the orbiting object

Newtonian Gravity

- Sir Isaac Newton (1642-1727)
- for the first time in history, a physical explanation of the planets' motions was found
- F - force of gravity
- m - mass of the orbiting object
- M - mass of the object being orbited

Newtonian Gravity

- Sir Isaac Newton (1642-1727)
- for the first time in history, a physical explanation of the planets' motions was found
- F - force of gravity
- m - mass of the orbiting object
- M - mass of the object being orbited
- r-distance between the two objects

Newtonian Gravity

- Sir Isaac Newton (1642-1727)
- for the first time in history, a physical explanation of the planets' motions was found
- F - force of gravity
- m - mass of the orbiting object
- M - mass of the object being orbited
- r-distance between the two objects
- $\hat{\mathbf{r}}$ - vector pointing from the first object to the second

Newtonian Gravity

- Sir Isaac Newton (1642-1727)
- for the first time in history, a physical explanation of the planets' motions was found
- F - force of gravity
- m - mass of the orbiting object
- M - mass of the object being orbited
- r-distance between the two objects
- $\hat{\mathbf{r}}$ - vector pointing from the first object to the second
- G - universal gravitational constant

Newtonian Gravity

- Sir Isaac Newton (1642-1727)
- for the first time in history, a physical explanation of the planets' motions was found
- F - force of gravity
- m - mass of the orbiting object
- M - mass of the object being orbited
- r-distance between the two objects
- $\hat{\mathbf{r}}$ - vector pointing from the first object to the second
- G - universal gravitational constant

$$
\begin{equation*}
\mathbf{F}=\mathrm{G} \frac{\mathrm{mM}}{\mathrm{r}^{2}} \hat{\mathbf{r}} \tag{4}
\end{equation*}
$$

Deriving Kepler's Laws

- Newton was able to derive all of Kepler's laws of planetary orbits, using his law of gravity along with his three laws of motion

Deriving Kepler's Laws

- Newton was able to derive all of Kepler's laws of planetary orbits, using his law of gravity along with his three laws of motion
- orbits should be elliptical

Deriving Kepler's Laws

- Newton was able to derive all of Kepler's laws of planetary orbits, using his law of gravity along with his three laws of motion
- orbits should be elliptical
- solved for the constant in Kepler's second law

Deriving Kepler's Laws

- Newton was able to derive all of Kepler's laws of planetary orbits, using his law of gravity along with his three laws of motion
- orbits should be elliptical
- solved for the constant in Kepler's second law
- h - ratio of planet's angular momentum to its mass

Deriving Kepler's Laws

- Newton was able to derive all of Kepler's laws of planetary orbits, using his law of gravity along with his three laws of motion
- orbits should be elliptical
- solved for the constant in Kepler's second law
- h - ratio of planet's angular momentum to its mass

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{h}{2} \tag{5}
\end{equation*}
$$

Deriving Kepler's Laws

- Newton was able to derive all of Kepler's laws of planetary orbits, using his law of gravity along with his three laws of motion
- orbits should be elliptical
- solved for the constant in Kepler's second law
- h - ratio of planet's angular momentum to its mass

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{h}{2} \tag{5}
\end{equation*}
$$

- solved for the constant in Kepler's third law

Deriving Kepler's Laws

- Newton was able to derive all of Kepler's laws of planetary orbits, using his law of gravity along with his three laws of motion
- orbits should be elliptical
- solved for the constant in Kepler's second law
- h - ratio of planet's angular momentum to its mass

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{h}{2} \tag{5}
\end{equation*}
$$

- solved for the constant in Kepler's third law

$$
\begin{equation*}
\frac{P^{2}}{a^{3}}=\frac{4 \pi^{2}}{\mathrm{GM}} \tag{6}
\end{equation*}
$$

Orbital Precession

- in a two-body system, a planet's orbit repeats the same way forever

Orbital Precession

- in a two-body system, a planet's orbit repeats the same way forever
- in the presence of other planets, a planet's orbit rotates slowly over time

Orbital Precession

- in a two-body system, a planet's orbit repeats the same way forever
- in the presence of other planets, a planet's orbit rotates slowly over time
- this is due to the gravitational force that they all exert on each othern

Orbital Precession

- in a two-body system, a planet's orbit repeats the same way forever
- in the presence of other planets, a planet's orbit rotates slowly over time
- this is due to the gravitational force that they all exert on each othern
- Newton's law of gravity predicts this, while Kepler's laws do not

Newtonian Precession Predictions

Planet	$(\delta \dot{\psi})_{\text {obs }}$	$(\delta \dot{\psi})_{\text {th }}$
Mercury	$575.19^{\prime \prime}$	$532.08^{\prime \prime}$
Venus	$21.6^{\prime \prime}$	$13.2^{\prime \prime}$
Earth	$1170^{\prime \prime}$	$1165^{\prime \prime}$

- Newton's laws do a good job approximating the rate of precession for all the planets except Mercury

Table: Precession rates in arc-seconds per century

Newtonian Precession Predictions

Planet	$(\delta \dot{\psi})_{\text {obs }}$	$(\delta \dot{\psi})_{\text {th }}$
Mercury	$575.19^{\prime \prime}$	$532.08^{\prime \prime}$
Venus	$21.6^{\prime \prime}$	$13.2^{\prime \prime}$
Earth	$1170^{\prime \prime}$	$1165^{\prime \prime}$

Table: Precession rates in arc-seconds per century

- Newton's laws do a good job approximating the rate of precession for all the planets except Mercury
- error for the other planets can be explained by imprecision of measurements, but Mercury's is too large

Newtonian Precession Predictions

Planet	$(\delta \dot{\psi})_{\text {obs }}$	$(\delta \dot{\psi})_{\text {th }}$
Mercury	$575.19^{\prime \prime}$	$532.08^{\prime \prime}$
Venus	$21.6^{\prime \prime}$	$13.2^{\prime \prime}$
Earth	$1170^{\prime \prime}$	$1165^{\prime \prime}$

Table: Precession rates in arc-seconds per century

- Newton's laws do a good job approximating the rate of precession for all the planets except Mercury
- error for the other planets can be explained by imprecision of measurements, but Mercury's is too large
- mystery puzzled physicists for many years

Corrections to Newtonian Gravity

- attempts were made to modify Newton's gravity to make it match the data

Corrections to Newtonian Gravity

- attempts were made to modify Newton's gravity to make it match the data
- these modifications could not be justified physically

Corrections to Newtonian Gravity

- attempts were made to modify Newton's gravity to make it match the data
- these modifications could not be justified physically
- much like the epicycles added to the geocentric model, these complicated a previously simple model, without justification

Corrections to Newtonian Gravity

- attempts were made to modify Newton's gravity to make it match the data
- these modifications could not be justified physically
- much like the epicycles added to the geocentric model, these complicated a previously simple model, without justification
- Urbain Le Verrier (1811-1877) predicted the existance of Neptune by the precession of Uranus, so he hypothesized another planet, named Vulcan, existed between the Sun and Mercury

Corrections to Newtonian Gravity

- attempts were made to modify Newton's gravity to make it match the data
- these modifications could not be justified physically
- much like the epicycles added to the geocentric model, these complicated a previously simple model, without justification
- Urbain Le Verrier (1811-1877) predicted the existance of Neptune by the precession of Uranus, so he hypothesized another planet, named Vulcan, existed between the Sun and Mercury
- no such planet has ever been found

Corrections to Newtonian Gravity

- attempts were made to modify Newton's gravity to make it match the data
- these modifications could not be justified physically
- much like the epicycles added to the geocentric model, these complicated a previously simple model, without justification
- Urbain Le Verrier (1811-1877) predicted the existance of Neptune by the precession of Uranus, so he hypothesized another planet, named Vulcan, existed between the Sun and Mercury
- no such planet has ever been found
- a new explanation was in order

General Relativity

- Einstein formulated his general theory of relativity in 1916

General Relativity

- Einstein formulated his general theory of relativity in 1916
- rejected the notion that gravity was a force

General Relativity

- Einstein formulated his general theory of relativity in 1916
- rejected the notion that gravity was a force
- spacetime itself is bent in the presence of mass

General Relativity

- Einstein formulated his general theory of relativity in 1916
- rejected the notion that gravity was a force
- spacetime itself is bent in the presence of mass
- the planets aren't travelling in a curved path around the Sun, the space around the Sun is itself curved

General Relativity Precession Calculations

- using general relativity, we can adapt Newton's law of gravity to be more precise

General Relativity Precession Calculations

- using general relativity, we can adapt Newton's law of gravity to be more precise

$$
\begin{equation*}
\mathbf{F}=\left[\mathrm{G} \frac{\mathrm{Mm}}{\mathrm{r}^{2}}+3 \mathrm{G} \frac{\mathrm{Mm} h^{2}}{c^{2} \mathrm{r}^{4}}\right] \hat{\mathbf{r}} \tag{7}
\end{equation*}
$$

General Relativity Precession Calculations

- using general relativity, we can adapt Newton's law of gravity to be more precise

$$
\begin{equation*}
\mathbf{F}=\left[\mathrm{G} \frac{\mathrm{Mm}}{\mathrm{r}^{2}}+3 \mathrm{G} \frac{\mathrm{Mm} h^{2}}{c^{2} \mathrm{r}^{4}}\right] \hat{\mathbf{r}} \tag{7}
\end{equation*}
$$

- using this modified equation adds an extra $41^{\prime \prime}$ of precession per century to Mercury's orbit

General Relativity Precession Calculations

- using general relativity, we can adapt Newton's law of gravity to be more precise

$$
\begin{equation*}
\mathbf{F}=\left[\mathrm{G} \frac{\mathrm{Mm}}{\mathrm{r}^{2}}+3 \mathrm{G} \frac{\mathrm{Mm} h^{2}}{c^{2} \mathrm{r}^{4}}\right] \hat{\mathbf{r}} \tag{7}
\end{equation*}
$$

- using this modified equation adds an extra $41^{\prime \prime}$ of precession per century to Mercury's orbit
- this is exactly the amount that was missing from Newtonian predictions

General Relativity Precession Calculations

- using general relativity, we can adapt Newton's law of gravity to be more precise

$$
\begin{equation*}
\mathbf{F}=\left[\mathrm{G} \frac{\mathrm{Mm}}{\mathrm{r}^{2}}+3 \mathrm{G} \frac{\mathrm{Mm} h^{2}}{c^{2} \mathrm{r}^{4}}\right] \hat{\mathbf{r}} \tag{7}
\end{equation*}
$$

- using this modified equation adds an extra $41^{\prime \prime}$ of precession per century to Mercury's orbit
- this is exactly the amount that was missing from Newtonian predictions
- this was one of the first things that Einstein calculated to test his theory out

Conclusions

- every model of the Universe (so far) has its flaws

Conclusions

- every model of the Universe (so far) has its flaws
- given enough time, those flaws will become apparent

Conclusions

- every model of the Universe (so far) has its flaws
- given enough time, those flaws will become apparent
- attempts to adapt the model to account for its flaws can have some success, but ultimately are a sign that a new model is needed

Conclusions

- every model of the Universe (so far) has its flaws
- given enough time, those flaws will become apparent
- attempts to adapt the model to account for its flaws can have some success, but ultimately are a sign that a new model is needed
- sometimes a completely new approach is needed to be successful

References I

URL: http: //www. spaceanswers.com/wp-content/uploads/2013/01/Celestial-sphere-illus.jpg.
URL: http://www. astronomy.ohio-state.edu/~pogge/Ast162/Movies/uma.gif.
URL: https://lh3.ggpht.com/cgMuSQK8oEg/TqnJBliUhxI/AAAAAAAAANk/yRe1t5WUbzo/s1600/old+geocentric+model.jpg.
URL: http://www.lasalle.edu/~smithsc/Astronomy/images/marsmovie.gif.
URL: http://faculty.fullerton.edu/cmcconnell/Models/ptolemy.gif.
URL: https://upload.wikimedia.org/wikipedia/commons/0/0e/Cassini_apparent.jpg.
URL: https://upload.wikimedia.org/wikipedia/commons/2/28/Copernican_heliocentrism_diagram2.jpg.

URL: http://faculty.fullerton.edu/cmcconnell/Models/Copernicus_Mars.gif.
URL: https://upload.wikimedia.org/wikipedia/commons/f/f7/An_image_describing_the_semi-major_and_semi-minor_axis_of_eclipse.png.
URL: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Kepler-first-law.svg/500px-Kepler-first-law.svg.png.
URL: https://upload.wikimedia.org/wikipedia/commons/6/69/Kepler-second-law.gif.
URL: https://upload.wikimedia.org/wikipedia/commons/8/89/Precessing_Kepler_orbit_280frames_ e0.6_smaller.gif.
URL: http://www.science4all.org/wp-content/uploads/2013/05/Gravity.jpg.
Carroll, Bradley W. and Dale A. Ostlie. An Introduction to Modern Astrophysics. 2nd ed. Pearson Education, Inc., 2007.

References II

Fitzpatrick, Richard. Classical Mechanics: an introductory course. 2006. URL: http://web.archive. bibalex. org/web/20060523200517/farside.ph.utexas.edu/teaching/301/lectures/node155.html.

- .Newtonian Dynamics. 2011. URL: http://farside.ph.utexas.edu/teaching/336k/lectures/.

Gerber's Gravity. URL: http://www.mathpages.com/home/kmath527/kmath527.htm.
Halley, Edmund. "Considerations on the Change of the Latitudes of Some of the Principal Fixt Stars". In:
Philosophical Transactions of the Royal Society 30 (1717).
Roseveare, N. T. "Mercury's Perihelion from Le Verrier to Einstein". In: The British Journal for the Philosophy of Science 35 (2), pp. 188-191.
The Precession of the Perihelion of Mercury. URL:
http://www.relativity.li/en/epstein2/read/i0_en/i1_en/.

Questions?

