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Variable Stars

Figure: Hertzsprung–Russell
diagram

stars whose brightness varies over time

some are only appear to be variable, while
others are intrinsicly variable

intrinsic variables are mostly giant stars

occur in the instability strip
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Classical Cepheid Variable Stars

intrinsically variable

pulsate periodically

pulsation period can range from days
to months

pulsation follows a period-luminosity
relationship
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Lightcurves

Figure: Lightcurves of different classes of variable stars
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Cepheid Period–Luminosity Relationship

a Cepheid’s period of oscillation is
proportional to its mean magnitude

we use linear least squares to find a
function which fits the data

fitted function can be used to
predict the brightness

data has a large spread, so
predictions are not as precise as we
would like them to be
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Cepheids as a Standard Candle

intensity of light is proportional to invserse square of distance travelled
from its source

knowing a Cepheid’s absolute magnitude means we can compare it with the
apparent magnitude and calculate its distance

need to use a population of Cepheids whose distance is already known to
calibrate the method for other populations with their absolute magnitudes

interstellar matter absorbs some of the light, causing the apparent
magnitude to decrease further

m︸︷︷︸
apparent

magnitude

− M︸︷︷︸
absolute

magnitude

= 5 log

(
d

10

)
− 5 =⇒ d︸︷︷︸
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parsecs

= 10
m−M

5 +1
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Cosmic Microwave Background

Figure: Full sky map of CMB, made from 9 years of WMAP data.
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Hubble’s Law

v︸︷︷︸
redshift
velocity

= H0︸︷︷︸
Hubble’s
constant

d︸︷︷︸
distance

H0 =
v

d

Hubble’s law describes the velocity
of the expansion of the Universe

redshift measurements give us v

PL relationship and other methods
give us d

their ratio is Hubble’s Constant

Cosmic Microwave Background
gives us a measure of H2

0Ω

Ω is the average density of the
Universe

independent measure of H0 is
needed to find Ω
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Fourier Analysis of Lightcurves

Figure: Fundamental Mode Cepheid in the LMC
with 7thorder Fourier fit from OGLEIII

A(t)︸︷︷︸
mag at
time t

= A0︸︷︷︸
mean
mag

+

n∑
k=1

Ak︸︷︷︸
scaling

l

sin( k︸︷︷︸
scaling
↔

ωt + Φk︸︷︷︸
shift
↔

)

assume basis lightcurve to
be sinusoidal

interpolated lightcurve is a
linear combination of these
basis lightcurves

find values of best fit for
A0, Ak and Φk

for nthorder fit, requires
2n + 1 parameters
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Fourier Parameters versus logP

Figure: Fourier parameter ratios of 1829 fundamental mode Cepheids in LMC
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Principal Component Analysis of Lightcurves

data decides the basis lightcurves

takes a sample of lightcurves of variable stars of the same type (A)

lightcurves are taken by evaluating the interpolating function for each star
at the same phases, at evenly spaced time intervals

lightcurves are normalized and standardized

construct the covariance matrix of this matrix

eigenvectors (Φ) of the covariance matrix are the basis lightcurves

any given star’s lightcurve can be recreated by a linear combination of the
eigenvectors, with a scalar coefficient (PC) called a “principle score”

for star i : Ai =
n∑

i=j

PCij Φj , PCij = Ai ·Φj

each eigenvector has a corresponding eigenvalue, which is a measure of its
significance

dropping all but the most significant eigengectors gives a very close
approximation to the original data with fewer parameters
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Principal Component Analysis of Lightcurves

Figure: Cepheids with varying order PCA fits
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Principal Scores versus logP

Figure: Principal scores 1 and 2 as functions of logP for 1829 fundamental mode
Cepheids in LMC
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Cepheid Period Luminosity Relationship

A0 = a logP + c
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Cepheid Period Luminosity Color Relationship

A0 = a logP + c

A0 = a logP +b(B−V )+c
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Cepheid Period Luminosity Principal Component
Relationship

A0 = a logP + c

A0 = a logP +b(B−V )+c

A0 = a logP + bPC1 +c
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Cepheid Period Luminosity Principal Component
Relationship

A0 = a logP + c

A0 = a logP +b(B−V )+c

A0 = a logP + bPC2 +c

Dan Wysocki (SUNY Oswego) PCA NYSSAPS 110th topical symposium 17 / 21



Period Luminosity Principal Component Relationship

Figure: A0 fitted with PC1 vs logP Figure: A0 fitted with PC2 vs logP
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Conclusions

period-luminosity-principal component relationship may be used to estimate
distances with more precision than the period-luminosity relationship

principal scores are independent of interstellar reddening

more precise distance measurements can be used to better calculate
Planck’s constant (H0)

combining a precise measurement of Planck’s constant with the
measurements obtained from the CMB (H2

0Ω) can be used to find a precise
measurement of the density of the Universe (Ω)
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